Fat partitioning in British Friesian cows: the influence of physiological state on dissected body composition

1985 ◽  
Vol 104 (3) ◽  
pp. 519-528 ◽  
Author(s):  
B. W. Butler-Hogg ◽  
J. D. Wood ◽  
J. A. Bines

SummaryThe influence of physiological state (pregnant, lactating, dry) on body composition and fat partitioning in Friesian cows has been examined. A total of 20 cows, four per physiological state, were slaughtered and their left half carcasses dissected into individual muscles, bones and fat depots. All body parts, including the internal organs and fat depots, were weighed at slaughter.Muscle tissue and the internal organs showed some weight changes, consistent with a redistribution of tissue towards the udder and gut, and mobilization of muscle, but the major changes in weight associated with changing physiological state occurred in total body fat.Intermuscular fat made the greatest absolute contribution to changing fat weight, but subcutaneous fat showed the greatest proportional change with changing physiological state. The order of depletion of fat depots during fat loss was approximately the reverse of the order of development found during developmental growth.The distribution of subcutaneous fat between seven defined regions of the carcass was not affected by differences in total fatness in different physiological states. This, and the high correlation found between fat depth and total body fatness, confirms the view that measures of subcutaneous fat depth, e.g. by ultrasonics, should be useful predictors of the energy status of cows in varying physiological states.

2006 ◽  
Vol 57 (12) ◽  
pp. 1321 ◽  
Author(s):  
N. R. Adams ◽  
J. R. Briegel ◽  
D. W. Pethick ◽  
M. A. Cake

Effects of high growth hormone (GH) activity on body composition and some aspects of meat quality were examined in sheep transgenic for an additional copy of the ovine GH gene, as a tool to explore the biological importance of the GH axis in sheep selected commercially for meat production. Carcasses of 16 GH and 25 control mixed-sex sheep aged 45 months, and 6 GH and 6 control ewes aged 20 months, were measured. The dressing percentage was lower in the GH sheep (P < 0.001). The GH sheep had similar muscle mass to controls, but the weight of their fat depots was reduced (P < 0.001) to approximately 40% of controls, whereas limb-bone mass was 43% greater (P < 0.001) than controls. Fore and hind limbs were equally affected. Skin and most internal organs were heavier, particularly the pancreas, kidney, alimentary canal, and the liver. The concentration of intramuscular fat in the GH sheep was only 27% that of controls (P < 0.001), whereas the average pH of muscle 24 h after slaughter and the melting point of subcutaneous fat were both increased (P < 0.05). Similar changes in organ weights and body composition have been observed in sheep selectively bred to enhance lamb growth rate or to decrease fatness, suggesting that relative GH activity contributed to the outcomes of those experiments. This study indicates the importance of a multi-trait breeding objective to ensure that mechanisms associated with GH do not impair meat quality.


1984 ◽  
Vol 38 (1) ◽  
pp. 23-32 ◽  
Author(s):  
I. A. Wright ◽  
A. J. F. Russel

ABSTRACTBody condition score, assessed subjectively on the live animal, was related to the directly determined body composition of 73 mature, non-pregnant, non-lactating cows of Hereford × Friesian, Blue-Grey, Galloway, Luing and British Friesian genotypes. Relationships between condition score and chemically determined body fat were all very highly significant, and considered to be of value for predictive purposes. Differences between genotypes in the proportion of fat stored in the main depots of the body resulted in differences in the relationship between condition score and body fat. British Friesian cows had a higher proportion of their fat in the intra-abdominal depots and the lowest proportion of subcutaneous fat, resulting in their being fatter at any given condition score. Hereford × Friesian cows had the highest proportion of subcutaneous fat and were thus the least fat at any condition score. One unit change in condition score was associated with a change of 2242 (s.e. 103) MJ of body tissue energy in Hereford × Friesian, Blue-Grey, Galloway and Luing cows and 3478 (s.e. 392) MJ in British Friesian cows. These figures may be used to bring a greater degree of precision to the nutritional management of beef and dairy cows.


1982 ◽  
Vol 35 (2) ◽  
pp. 253-262 ◽  
Author(s):  
B. W. Butler-Hogg ◽  
J. D. Wood

ABSTRACTNinety-two British Friesians and 62 Jersey castrated male cattle were slaughtered serially in five age groups at 13, 89, 170, 339 and 507 days, and dissected fully into lean, bone, intermuscular fat, subcutaneous fat, perirenal-retroperitoneal fat (kidney knob and channel fat), omental fat and mesenteric fat. The aim was to investigate the partition of body fat in these dairy breeds and the role of the partition of fat in determining carcass value.Relative to live weight, Friesians had more lean, subcutaneous fat and carcass fat (subcutaneous and intermuscular) at most ages, and Jerseys had more kidney knob and channel fat, and intra-abdominal fat. Friesians had a higher killing-out proportion and lean:bone ratio, and thicker subcutaneous fat.The order of increasing relative growth of fat depots with total body fat as the independent variable was, for Friesians: intermuscular < mesenteric < kidney knob and channel fat < subcutaneous < omental. In Jerseys the order was: intermuscular < mesenteric < subcutaneous < kidney knob and channel fat < omental. There were only small breed differences in the distribution of subcutaneous fat between eight regions. t I is suggested that, between breeds, there is a physiological link between the capacity for milk-fat production and the partition of fat within the body, with relatively high milk-fat producers depositing proportionately more fat intra-abdominally.Since the timing of slaughter is often determined by level of external finish in beef production, the breed difference in the partition of fat, which caused Jerseys to have a higher proportion of kidney knob and channel fat, and intermuscular fat, at the same proportion of subcutaneous fat, would reduce carcass value in Jerseys compared with Friesians.


1984 ◽  
Vol 39 (3) ◽  
pp. 405-411 ◽  
Author(s):  
B. W. Butler-Hogg

ABSTRACTThe growth of Southdown and Clun lambs was studied over the period birth to 415 days of age.At birth, 50, 100, 150 and 200 days of age five lambs of each breed, and at 415 days three lambs of each breed, were slaughtered and their body composition determined by dissection.The relative growth of lean, bone and total body fat was not influenced by breed. At each age both Cluns and Southdowns had similar proportions of total body fat, and were considered to be at the same stage of maturity.There was a breed difference in fat partitioning, with the Clun depositing proportionately more of its total body fat intra-abdominally, compared with the Southdown. However, there was no significant effect of breed on the growth of individual fat depots relative to total fat. From earliest to latest the order of maturity was pericardial, intermuscular, perirenal-retroperitoneal, mesenteric, subcutaneous and lastly, omental fat.


1987 ◽  
Vol 253 (6) ◽  
pp. R942-R944 ◽  
Author(s):  
R. B. Fishman ◽  
J. Dark

The presumption that sensory information does not arise from white adipose tissue was reevaluated using the neuroanatomical tracer, "true blue." Fluorescent cell bodies were observed in dorsal root ganglia of rats after tracer was implanted into inguinal or dorsal subcutaneous fat depots. Sensory information from adipose tissue may play an important role in the regulation of regional and total body fat mass.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3827
Author(s):  
Gal Tsaban ◽  
Avital Bilitzky-Kopit ◽  
Anat Yaskolka Meir ◽  
Hila Zelicha ◽  
Yftach Gepner ◽  
...  

Accumulation of cervical and chin subcutaneous adipose tissues (SAT) represent known phenotypes of obesity. We aimed to evaluate the sensitivity of these fat storages to long-term weight-loss directed lifestyle-intervention and to assess their relations to bodily-adiposity, insulin-resistance, and cardiometabolic risk; We randomly assigned 278 participants with abdominal-obesity/dyslipidemia to low-fat or Mediterranean/low-carbohydrate diets +/− physical-activity. All participants underwent an 18 month whole-body magnetic resonance imaging follow-up, from which we assessed cervical and chin SAT-areas; Participants (age = 48 years; 90% men; body-mass-index = 30.9 kg/m2) had an 18-month adherence-rate of 86%. Cervical-SAT and chin-SAT decreased after 6-months (−13.1% and −5.3%, respectively, p < 0.001). After 18-months only cervical-SAT remained decreased compared to baseline (−5%, p < 0.001). Cervical and chin-SAT 18-month changes were associated with changes in weight (r = 0.70, r = 0.66 respectively; <0.001 for both) and visceral-adipose-tissue (VAT; r = 0.35, r = 0.42 respectively; <0.001 for both). After adjustment to VAT, waist-circumference, or weight-changes, chin-SAT 18-month reduction was associated with favorable changes in fasting-glucose (β = 0.10; p = 0.05), HbA1c (β = 0.12; p = 0.03), and homeostasis-model-assessment-of-insulin-resistance (β = 0.12; p = 0.03). Cervical-SAT 18-month reduction was associated with decreased triglycerides (β = 0.16; p = 0.02) and leptin (β = 0.19; p = 0.01) independent of VAT; Cervical and chin-SATs are dynamic fat depots that correspond with weight-loss and are associated with changes in cardiometabolic profile. In long-term, chin-SAT displays a larger rebound compared with cervical-SAT. Chin-SAT accumulation is associated with in insulin-resistance, independent of central obesity. (ClinicalTrials identifier NCT01530724)


2004 ◽  
Vol 286 (6) ◽  
pp. R1149-R1155 ◽  
Author(s):  
Cherie Rooks ◽  
TaNeisha Bennet ◽  
Timothy J. Bartness ◽  
Ruth B. S. Harris

Rodents tend to compensate for experimental obesity in which both adipocyte size and number are increased. In contrast, it was recently reported that Siberian hamsters do not compensate for dorsal subcutaneous transplants of fat, which increase body fat without changing the size of adipocytes. In the first experiment described here we tested whether mice changed the size of their endogenous fat stores 2 or 5 wk after donor fat was added as subcutaneous transplants. Each epididymal fat pad from donor mice was cut in half and placed ventrally in recipient mice, increasing body fat by ∼10%. After 2 wk, there was no effect of the transplants on the size of endogenous fat depots or the size of adipocytes in epididymal fat depots. There was a substantial decrease in mass and adipocyte size in transplanted fat. Five weeks after surgery the endogenous epididymal and retroperitoneal fat depots of recipient mice were significantly decreased, serum leptin was reduced, and the size of adipocytes in endogenous epididymal fat was significantly reduced, although cell number had not changed. The size of transplanted cells was the same as at 2 wk. In a second experiment, epididymal fat was placed as either dorsal or ventral subcutaneous fat transplants. Five weeks after surgery the endogenous fat depots were decreased in all recipient mice but none of the differences reached statistical significance. These results suggest that mice have mechanisms to maintain total body fat mass that respond to an increase in the number of fat cells present.


1979 ◽  
Vol 92 (1) ◽  
pp. 69-81 ◽  
Author(s):  
J. Z. Foot ◽  
E. Skedd ◽  
D. N. McFarlane

SummaryIn two experiments with female Scottish Blackface or Border Leicester x Scottish Blackface sheep nine or ten animals were slaughtered in mid lactation and the remainder either in November at the time of the subsequent mating (Expt 1) or at weaning (Expt 2).The sheep were infused periodically, including just before slaughter, with 100 μCi tritiated water (TOH) in order to measure total body water by dilution and to estimate body fat using the inverse relationship between the proportions of fat and water in the body. The accuracy of the methods was assessed when the sheep were slaughtered. In the ton lactating Scottish Blackface sheep of Expt 1 fat made up 11.5% of the total body weight with an S.D. of 8·38% whereas the 11 sheep slaughtered at mating were twice as fat (23·2, S.D. 4·01 %). The 25 Border Leicester × Blackface sheep were all thin, whether they were slaughtered in mid lactation (4·4, S.D. 2·56%) or at weaning (3·4, S.D. 2·81%).The standard error of estimate of body water from TOH space in Expt 2 was 1·2 kg c.v. 2·8%) and lower in Expt 1.The precision with which an animal could be weighed was very important in determining the accuracy with which body fat could be predicted from live weight and TOH space. In both experiments the standard error of estimate for body fat in lactating sheep was between 600 and 700 g, compared with 1·3–2·7 kg when body fat was predicted from live weight alone. These estimates were sufficiently accurate to be of value in following changes in body composition in live animals as their nutritional and physiological state alters and for comparing animals in groups where the average fatness is greater and the range wider than in the sheep used in Expt 2.


2014 ◽  
Vol 77 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Anna Pastuszak ◽  
Joanna Lewandowska ◽  
Krzysztof Buśko ◽  
Jadwiga Charzewska

Abstract The study is aimed at evaluation of the effect of regular physical activity on total and subcutaneous body fat and its distribution in boys aged 10 to 16 years. A three-year longitudinal study was carried out in order to monitor physical development in 237 boys from sports schools and regular schools in Warsaw, Poland. The boys were selected so that their rate of puberty changes was similar based on evaluation of voice and facial hair. The authors measured 5 skinfolds in the following sites: triceps, calf, subscapular, suprailiac, and abdominal skinfolds. The percentage fraction of total body fat in body mass was measured by means of Tanita TBF 300 electronic body composition analyser. A limb fat to trunk fat ratio (LF/TF) was also calculated in order to evaluate the type of distribution of subcutaneous fat in boys and monitor its changes as affected by regular high physical activity throughout puberty. Lower total body fat and subcutaneous fat in boys from sports schools was the effect of considerably higher physical activity. It was demonstrated that with some minimal values of total body fat and subcutaneous fat, physical activity did not cause a reduction in body fat. It was found that elevated physical activity in boys is conducive to development of a more limb-oriented (peripheral) fatness, which is more favourable to human health


1992 ◽  
Vol 54 (1) ◽  
pp. 53-58 ◽  
Author(s):  
A. H. Sulieman ◽  
H. Galbraith ◽  
J. H. Topps

AbstractThe effect of the anabolic steroid trenbolone acetate (TEA) on growth and body composition was studied in Scottish Blackface mature female sheep weighing 45 kg. The sheep were blocked by weight and randomly allocated to be untreated controls (C) or subcutaneously implanted with 20 (Tl), 40 (T2) or 60 (T3) mg TBA 60 days before slaughter. The sheep were offered to appetite a loose-mix diet which contained an estimated 11 M] metabolizable energy and 120 g crude protein per kg dry matter. Live-weight gain and food intake, on average, were not significantly affected by the hormonal treatment which significantly reduced gut fill and significantly increased empty body and chilled carcass weights. Of the carcass tissues which were dissected only weights of total lean and intermuscular fat were significantly increased following TBA implantation. The relative development of fat, lean and bone in the carcass in the hormonally treated compared with control sheep was not significantly altered. The only effects on weights of organs and body parts associated with TBA implantation were increases in fat deposition in omental and perinephric and retroperitoneal depots. There was some evidence of an increasing response to TBA treatment with increasing dose level for weights of chilled carcass, carcass lean and the ratio of subcutaneous fat to intermuscular fat.


Sign in / Sign up

Export Citation Format

Share Document