Effects of the timing of ploughing-in temporary leguminous pastures and two winter cover crops on nitrogen mineralization, nitrate leaching and spring wheat growth

1995 ◽  
Vol 124 (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. S. Francis ◽  
R. J. Haynes ◽  
P. H. Williams

SUMMARYTwo field experiments at Canterbury, New Zealand during 1991–93 investigated the effect of the timing of ploughing a 4-year-old ryegrass/white clover pasture and the effect of two winter cover crops on subsequent N mineralization, nitrate leaching and growth and N uptake of the following wheat crops.Net N mineralization of organic N (of plant and soil origin) increased with increased fallow period between ploughing and leaching. The total amount of N accumulated in the profile by the start of winter ranged from 107 to 131 and from 42 to 45 kg N/ha for fallow treatments started in March and May respectively. Winter wheat (planted in May) had no effect on mineral N contents by the start of winter, whereas greenfeed (GF) oats (planted in March) significantly reduced the mineral N content in one year.Cumulative leaching losses over the first winter after ploughing-in pasture varied markedly between years in relation to rainfall amount and distribution. Leaching losses were greater from the March fallow (72–106 kg N/ha) than the May fallow treatments (8–52 kg N/ha). Winter wheat did not reduce leaching losses in either year. GF oats did not reduce losses in 1991/92, but losses in 1992/93, when major drainage events occurred late in the winter, were only c. 40% of those under fallow.Incorporation of a large amount (> 7 t/ha dry matter) of pasture or GF oat residue in spring depressed yield and total N uptake of the following spring wheat, largely due to net N immobilization which could be overcome by the application of fertilizer N.First-year treatments had very little residual effect in the second year. Leaching losses over the second winter (mean 142 kg N/ha) were largely unaffected by the extent of first year leaching losses. Second year leaching losses were greater than first year losses, probably due to the greater amount of mineral N at depth in the soil before the start of the second winter.

1998 ◽  
Vol 131 (3) ◽  
pp. 299-308 ◽  
Author(s):  
G. S. FRANCIS ◽  
K. M. BARTLEY ◽  
F. J. TABLEY

Two field experiments in Canterbury, New Zealand, were conducted during 1993–95 following the ploughing of temporary pasture leys. These experiments investigated the effects of cover crop management on the accumulation of soil mineral N and nitrate leaching during winter, and the growth and N uptake of the following spring cereal crop. The cover crops used were ryegrass (Lolium multiflorum L.), oats (Avena sativa L.), lupins (Lupinus angustifolius L.), mustard (Sinapis alba L.) and winter wheat (Triticum aestivum).Ploughing of temporary pasture in autumn (March) resulted in extensive net N mineralization of organic N by the start of winter (June). In fallow soil, mineral N in the profile in June ranged from 98 kg N/ha in 1993 to 128 kg N/ha in 1994. When cover crops were established early in the autumn (March) in 1993, both the above-ground dry matter production (1440–3108 kg DM/ha) and its N content (50–71 kg N/ha) were substantial by the start of winter. In 1994, establishment of cover crops one month later (April) resulted in very little dry matter production and N uptake by June. In both years, compared with fallow soil, winter wheat planted in May had little effect on soil mineral N content by the start of winter.Compared with fallow, cover crops had little effect on soil drainage over winter. Cumulative nitrate leaching losses from fallow soil were much smaller in 1993 (23 kg N/ha) than in 1994 (49 kg N/ha), mainly due to differences in rainfall distribution. Cover crops reduced cumulative nitrate leaching losses in 1993 to 1–5 kg N/ha and in 1994 to 22–30 kg N/ha. When cover crops were grazed, soil mineral N contents were increased due to the return of ingested plant N to urine patch areas of soil. Elevated soil mineral N contents under grazing persisted throughout the winter. Grazing had little effect on cumulative nitrate leaching losses, mainly because of the small amount of drainage that occurred after grazing in either year.Compared with fallow, incorporation of large amounts of non-leguminous above ground dry matter depressed the yield and N uptake of the following spring-sown cereal crop. Where cover crops were grazed, yields of the following cereal crops were similar to those for soil fallow over the winter.


2014 ◽  
Vol 18 (12) ◽  
pp. 5239-5253 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990–2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha−1, but decreased to 4.6–10.1 kg ha−1 with cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.


2008 ◽  
Vol 59 (12) ◽  
pp. 1156 ◽  
Author(s):  
A. Gselman ◽  
B. Kramberger

Winter cover crops are beneficial, especially legumes that can supply nitrogen (N) to the next crop. The purpose of this study, involving separate experiments carried out at 2 different locations in north-eastern Slovenia, was to determine the most appropriate sowing time (early, early autumn SD1; late, mid autumn SD2; very late, late autumn SD3) for winter legumes (Trifolium subterraneum L., T. incarnatum L., T. pratense L., and Vicia villosa Roth) for the optimal yield of beneficial dry matter and soil N cycling. The control treatment used Lolium multiflorum Lam. For legume cover crops in SD1, from 915.0 (T. subterraneum) to 2495.0 (V. villosa) kg herbage dry matter yield (HDMY)/ha, 52.3 (T. pratense) to 148.4 (T. incarnatum) kg accumulated N (AN)/ha, and 14.5 (T. pratense) to 114.5 (T. incarnatum) kg symbiotically fixed N (Nsymb)/ha was obtained to the end of autumn. Until the spring ploughing-in, which was before maize sowing, legume cover crops in SD1 yielded 1065.0 (T. subterraneum) to 4440.0 (T. incarnatum) kg HDMY/ha, 74.9 (T. subterraneum) to 193.0 (V. villosa) kg AN/ha, and 4.7 (T. subterraneum) to 179.0 (V. villosa) kg Nsymb/ha. All parameters in SD2 were significantly lower than in SD1, whereas the SD3 sowing was not suitable for the legumes. The benefits of legume winter cover crops with regard to symbiotic N fixation were achieved only by early sowing; however, the amount of soil mineral N in late autumn and in early spring was decreased under L. multiflorum more than under the legumes.


1993 ◽  
Vol 47 (5) ◽  
pp. 12-15 ◽  
Author(s):  
Louise Jackson ◽  
Lisa J. Wyland ◽  
Jill A. Klein ◽  
Richard Smith ◽  
William Chaney, Ph.D. ◽  
...  

2002 ◽  
Vol 82 (4) ◽  
pp. 469-479 ◽  
Author(s):  
M O Gasser ◽  
M R Laverdière ◽  
R. Lagacé ◽  
J. Caron

Groundwater quality is at risk when high levels of N fertilizers are used on sandy soils. A monitoring program was initiated in the summer of 1995, to quantify nitrate leaching in sandy soils used for potato production near Quebec city, Canada. Three drainable lysimeters were installed in each of five fields, for a total of 15 lysimeters. During a 5-yr monitoring period, crop N uptake, mineral and organic N fertilizers use, nitrate concentrations and fluxes from drainage water at 1-m soil depth were assessed under potato, cereal and hay crops. In one field, a clover and timothy sod that received low mineral N fertilizer inputs generated the lowest annual nitrate leaching losses ranging from 7 to 20 kg NO3-N ha-1. High nitrate leaching losses (116 ± 40 kg N ha-1) were measured under potato crops receiving high mineral N fertilizer inputs. Cereals, including barley and wheat receiving moderate mineral N fertilizer inputs and in some instance N from pig slurry, dairy cow manure or paper mill sludge, also generated high nitrate leaching losses (88 ± 45 kg N ha-1). Only sod and oat crops generated annual flux averaged nitrate concentrations lower than 10 mg NO3-N L-1, the accepted standard for drinking water, while higher concentrations, ranging from 13 to 52 mg NO3-N L-1, were recorded under barley, wheat and potato crops receiving moderate to high amounts of mineral N fertilizer. Nitrate flux concentrations were moderate during the cropping season (May-August), highest in fall (September-December) and lowest in the winter-early spring period (January-April). After 5 yr of survey, use of pig slurry and paper mill sludge in potato-cereal crop rotations (51 to 192 kg N ha-1 annually) with mineral N fertilizers (103 to 119 kg N ha-1 annually) resulted in nitrate leaching losses (87 to 132 kg N ha-1 annually), at least 20 kg N ha-1 more than N exported by crop at harvest. More than 60% of N applied as pig slurry seemed to be unaccounted for in the partial N balance that included crop N uptake and nitrate leaching, suggesting that important losses probably occurred through ammonia volatilization, denitrification, or N immobilization in soil organic matter and crop residues. Key words: Barley, lysimeter, nitrate leaching, nitrogen balance, pig slurry, potato


2013 ◽  
Vol 10 (11) ◽  
pp. 14229-14263 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 669c-669
Author(s):  
Bharat P. Singh ◽  
Upendra M. Sanju ◽  
Wayne F. Whitehead

Our objective was to determine the effect of winter cover crops on the yield and N concentration of the following crop of tomato. No commercial fertilizer was applied to the tomato crop. Cover crops were planted in fall in a randomized complete-block design with control (fallow), rye, hairy vetch, and crimson clover treatments. `Mountain Pride' tomato was planted in spring after incorporating cover crops into the soil. Soil inorganic N content during the tomato growing season was significantly affected by the nature of cover crops planted during winter. Tomato planted after legumes had significantly greater amounts of inorganic N available for uptake compared to nonlegume or control. A rye cover crop did not have any effect on the yield of the ensuing tomato crop. On the contrary, a 15% increase in tomato fruit yields resulted from cover cropping with legumes. The N concentration in fruit in all treatments was similar. However, tomato grown after rye had significantly lower vegetative N concentration. Total N uptake was significantly greater in tomato succeeding legumes compared to nonlegume or fallow. It was concluded that by adding inorganic N into the soil, legumes increased the fruit yield and N uptake of the succeeding tomato crop.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 22-28 ◽  
Author(s):  
B. Kramberger ◽  
A. Gselman ◽  
M. Podvršnik ◽  
J. Kristl ◽  
M. Lešnik

To investigate the environmental advantages of using grass-clover binary mixtures over pure stands as winter cover crops, a serial of five field experiments (each designed as randomized complete blocks with four replicates) was carried out in eastern Slovenia. Trifolium incarnatum L. and Lolium multiflorum Lam. were sown in late summer as pure stands and binary mixtures. Pooled data calculated from all the experiments revealed that the soil mineral N in spring and accumulation of N by plants decreased with decreasing proportion of T. incarnatum in the binary mixtures, while the C:N ratio of cover crop organic matter increased. C accumulation was the highest when the seeding ratio of the binary mixture of T. incarnatum and L. multiflorum was 50:50. In the C and N environmentally sustainable management efficiency coefficients, three important traits of winter cover crops for environmental pro-tection were given equal importance (low soil mineral N content in spring, high C accumulation in plants, and high N accumulation in plants). The coefficient was higher for binary mixtures of T. incarnatum and L. multiflorum than for pure stands of these crops, proving the complex environmental advantages of binary mixtures over pure stands.


Sign in / Sign up

Export Citation Format

Share Document