The effect of winter cover crop management on nitrate leaching losses and crop growth

1998 ◽  
Vol 131 (3) ◽  
pp. 299-308 ◽  
Author(s):  
G. S. FRANCIS ◽  
K. M. BARTLEY ◽  
F. J. TABLEY

Two field experiments in Canterbury, New Zealand, were conducted during 1993–95 following the ploughing of temporary pasture leys. These experiments investigated the effects of cover crop management on the accumulation of soil mineral N and nitrate leaching during winter, and the growth and N uptake of the following spring cereal crop. The cover crops used were ryegrass (Lolium multiflorum L.), oats (Avena sativa L.), lupins (Lupinus angustifolius L.), mustard (Sinapis alba L.) and winter wheat (Triticum aestivum).Ploughing of temporary pasture in autumn (March) resulted in extensive net N mineralization of organic N by the start of winter (June). In fallow soil, mineral N in the profile in June ranged from 98 kg N/ha in 1993 to 128 kg N/ha in 1994. When cover crops were established early in the autumn (March) in 1993, both the above-ground dry matter production (1440–3108 kg DM/ha) and its N content (50–71 kg N/ha) were substantial by the start of winter. In 1994, establishment of cover crops one month later (April) resulted in very little dry matter production and N uptake by June. In both years, compared with fallow soil, winter wheat planted in May had little effect on soil mineral N content by the start of winter.Compared with fallow, cover crops had little effect on soil drainage over winter. Cumulative nitrate leaching losses from fallow soil were much smaller in 1993 (23 kg N/ha) than in 1994 (49 kg N/ha), mainly due to differences in rainfall distribution. Cover crops reduced cumulative nitrate leaching losses in 1993 to 1–5 kg N/ha and in 1994 to 22–30 kg N/ha. When cover crops were grazed, soil mineral N contents were increased due to the return of ingested plant N to urine patch areas of soil. Elevated soil mineral N contents under grazing persisted throughout the winter. Grazing had little effect on cumulative nitrate leaching losses, mainly because of the small amount of drainage that occurred after grazing in either year.Compared with fallow, incorporation of large amounts of non-leguminous above ground dry matter depressed the yield and N uptake of the following spring-sown cereal crop. Where cover crops were grazed, yields of the following cereal crops were similar to those for soil fallow over the winter.

1995 ◽  
Vol 124 (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. S. Francis ◽  
R. J. Haynes ◽  
P. H. Williams

SUMMARYTwo field experiments at Canterbury, New Zealand during 1991–93 investigated the effect of the timing of ploughing a 4-year-old ryegrass/white clover pasture and the effect of two winter cover crops on subsequent N mineralization, nitrate leaching and growth and N uptake of the following wheat crops.Net N mineralization of organic N (of plant and soil origin) increased with increased fallow period between ploughing and leaching. The total amount of N accumulated in the profile by the start of winter ranged from 107 to 131 and from 42 to 45 kg N/ha for fallow treatments started in March and May respectively. Winter wheat (planted in May) had no effect on mineral N contents by the start of winter, whereas greenfeed (GF) oats (planted in March) significantly reduced the mineral N content in one year.Cumulative leaching losses over the first winter after ploughing-in pasture varied markedly between years in relation to rainfall amount and distribution. Leaching losses were greater from the March fallow (72–106 kg N/ha) than the May fallow treatments (8–52 kg N/ha). Winter wheat did not reduce leaching losses in either year. GF oats did not reduce losses in 1991/92, but losses in 1992/93, when major drainage events occurred late in the winter, were only c. 40% of those under fallow.Incorporation of a large amount (> 7 t/ha dry matter) of pasture or GF oat residue in spring depressed yield and total N uptake of the following spring wheat, largely due to net N immobilization which could be overcome by the application of fertilizer N.First-year treatments had very little residual effect in the second year. Leaching losses over the second winter (mean 142 kg N/ha) were largely unaffected by the extent of first year leaching losses. Second year leaching losses were greater than first year losses, probably due to the greater amount of mineral N at depth in the soil before the start of the second winter.


1987 ◽  
Vol 109 (1) ◽  
pp. 141-157 ◽  
Author(s):  
T. M. Addiscott ◽  
A. P. Whitmore

summaryThe computer model described simulates changes in soil mineral nitrogen and crop uptake of nitrogen by computing on a daily basis the amounts of N leached, mineralized, nitrified and taken up by the crop. Denitrification is not included at present. The leaching submodel divides the soil into layers, each of which contains mobile and immobile water. It needs points from the soil moisture characteristic, measured directly or derived from soil survey data; it also needs daily rainfall and evaporation. The mineralization and nitrification submodel assumes pseudo-zero order kinetics and depends on the net mineralization rate in the topsoil and the daily soil temperature and moisture content, the latter being computed in the leaching submodel. The crop N uptake and dry-matter production submodel is a simple function driven by degree days of soil temperature and needs in addition only the sowing date and the date the soil returns to field capacity, the latter again being computed in the leaching submodel. A sensitivity analysis was made, showing the effects of 30% changes in the input variables on the simulated amounts of soil mineral N and crop N present in spring when decisions on N fertilizer rates have to be made. Soil mineral N was influenced most by changes in rainfall, soil water content, mineralization rate and soil temperature, whilst crop N was affected most by changes in soil temperature, rainfall and sowing date. The model has so far been applied only to winter wheat growing through autumn, winter and spring but it should be adaptable to other crops and to a full season.The model was validated by comparing its simulations with measurements of soil mineral N, dry matter and the amounts of N taken up by winter wheat in experiments made at seven sites during 5 years. The simulations were assessed graphically and with the aid of several statistical summaries of the goodness of fit. The agreement was generally very good; over all years 72% of all simulations of soil mineral N to 90 cm depth were within 20 kg N/ha of the soil measurements; also 78% of the simulations of crop nitrogen uptake were within 15 kg N/ha and 63% of the simulated yields of dry matter were within 25 g/m2 of the amounts measured. All correlation coefficients were large, positive, and highly significant, and on average no statistically significant differences were found between simulation and measurement either for soil mineral N or for crop N uptake.


HortScience ◽  
2010 ◽  
Vol 45 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Emily R. Vollmer ◽  
Nancy Creamer ◽  
Chris Reberg-Horton ◽  
Greg Hoyt

Cover crops of foxtail millet ‘German Strain R’ [Setaria italica (L.) Beauv.] and cowpea ‘Iron & Clay’ [Vigna unguiculata (L.) Walp.] were grown as monocrops (MIL, COW) and mixtures and compared with a bare ground control (BG) for weed suppression and nitrogen (N) contribution when followed by organically managed no-till bulb onion (Allium cepa L.) production. Experiments in 2006–2007 and 2007–2008 were each conducted on first-year transitional land. Mixtures consisted of cowpea with high, middle, and low seeding rates of millet (MIX-70, MIX-50, MIX-30). During onion production, each cover crop treatment had three N rate subplots (0, 105, and 210 kg N/ha) of surface-applied soybean meal [Glycine max (L.) Merrill]. Cover crop treatments COW and BG had the greatest total marketable onion yield both years. Where supplemental baled millet was applied in 2006–2007, onion mortality was over 50% in MIL and MIX and was attributed to the thickness of the millet mulch. Nitrogen rates of 105 and 210 kg N/ha increased soil mineral N (NO3– and NH4+) on BG plots 2 weeks after surface application of soybean meal each year, but stopped having an effect on soil mineral N by February or March. Split applications of soybean meal could be an important improvement in N management to better meet increased demand for N uptake during bulb initiation and growth in the spring.


2004 ◽  
Vol 142 (2) ◽  
pp. 141-151 ◽  
Author(s):  
J. ERIKSEN ◽  
F. P. VINTHER ◽  
K. SØEGAARD

Grass-legume associations may offer a way of improving the N efficiency of dairy farming, but may also have an adverse impact on the environment by increasing leaching losses. Nitrate leaching from four cropping sequences with different grassland frequency and management (long-term grazed, long-term cut, cereals followed by 1 and 2-year grazed leys) were investigated on a loamy sand in central Jutland for both unfertilized grass-clover (perennial ryegrass (Lolium perenne L.)/white clover (Trifolium repens L.)) and fertilized perennial ryegrass (300 kg N/ha) swards during 1997–2002. Furthermore, 1 year (2001) of N2 fixation in 1-, 2- and 8-year-old grass-clover pastures was determined. Nitrate leaching from grazed unfertilized grass-clover was always considerably lower than from grazed fertilized ryegrass. The effect of grassland age on nitrate leaching was insignificant in grass-clover but clear in grazed ryegrass, where levels increased dramatically with sward age. In production years 6–8, leaching from grass-clover was only 9–13% of the comparable losses from ryegrass. Under the cutting regime grass-clover showed a significant reduction in both yield and N-removal with increasing sward age, whereas for ryegrass these figures did not show any decreasing trend. N2 fixation was lower in 8-year-old swards compared with fully established 2-year-old swards as a consequence of lower dry matter production, lower clover content and a lower proportion of clover-N derived from the atmosphere. The results from the present study indicate that the higher leaching losses observed in fertilized grass compared with unfertilized grass-clover systems were caused by (1) a reduction in N2-fixation in grass-clover over time and (2) a reduction in dry matter production in grass-clover over time, lowering the grazing intensity and the recycling of grassland N via animal excreta.


1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


1995 ◽  
Vol 125 (1) ◽  
pp. 61-68 ◽  
Author(s):  
M. F. Allison ◽  
H. M. Hetschkun

SUMMARYIn 1990–92, field experiments were performed at Broom's Barn Experimental Station to study the effect of 5 years' repeated straw incorporation on sugarbeet. Straw incorporation had no effect on plant population density. Processing quality was reduced by incorporated straw but N had a much larger effect. The effect of incorporated straw on the mineral N content of the soils and N uptake by beet was inconsistent, and this may be related to the amount of soil mineral N present when the straw was incorporated. The efficiency of fertilizer use was unaffected by straw incorporation. On Broom's Barn soils when straw was incorporated, the optimal economic N dressing was c. 120 kg N/ha, and in unincorporated plots it was c. 100 kg N/ha. At the optimal economic N rate, incorporated straw increased beet yields.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 634 ◽  
Author(s):  
Graeme D. Schwenke ◽  
David F. Herridge ◽  
Clemens Scheer ◽  
David W. Rowlings ◽  
Bruce M. Haigh ◽  
...  

The northern Australian grains industry relies on nitrogen (N) fertiliser to optimise yield and protein, but N fertiliser can increase soil fluxes of nitrous oxide (N2O) and methane (CH4). We measured soil N2O and CH4 fluxes associated with wheat (Triticum aestivum) and barley (Hordeum vulgare) using automated (Expts 1, 3) and manual chambers (Expts 2, 4, 5). Experiments were conducted on subtropical Vertosol soils fertilised with N rates of 0–160kgNha–1. In Expt 1 (2010), intense rainfall for a month before and after sowing elevated N2O emissions from N-fertilised (80kgNha–1) wheat, with 417gN2O-Nha–1 emitted compared with 80g N2O-Nha–1 for non-fertilised wheat. Once crop N uptake reduced soil mineral N, there was no further treatment difference in N2O. Expt 2 (2010) showed similar results, however, the reduced sampling frequency using manual chambers gave a lower cumulative N2O. By contrast, very low rainfall before and for several months after sowing Expt 3 (2011) resulted in no difference in N2O emissions between N-fertilised and non-fertilised barley. N2O emission factors were 0.42, 0.20 and –0.02 for Expts 1, 2 and 3, respectively. In Expts 4 and 5 (2011), N2O emissions increased with increasing rate of N fertiliser. Emissions were reduced by 45% when the N fertiliser was applied in a 50:50 split between sowing and mid-tillering, or by 70% when urea was applied with the nitrification inhibitor 3,4-dimethylpyrazole-phosphate. Methane fluxes were typically small and mostly negative in all experiments, especially in dry soils. Cumulative CH4 uptake ranged from 242 to 435g CH4-Cha–1year–1, with no effect of N fertiliser treatment. Considered in terms of CO2 equivalents, soil CH4 uptake offset 8–56% of soil N2O emissions, with larger offsets occurring in non-N-fertilised soils. The first few months from N fertiliser application to the period of rapid crop N uptake pose the main risk for N2O losses from rainfed cereal cropping on subtropical Vertosols, but the realisation of this risk is dependent on rainfall. Strategies that reduce the soil mineral N pool during this time can reduce the risk of N2O loss.


2001 ◽  
Vol 136 (1) ◽  
pp. 15-33 ◽  
Author(s):  
R. SYLVESTER-BRADLEY ◽  
D. T. STOKES ◽  
R. K. SCOTT

Experiments at three sites in 1993, six sites in 1994 and eight sites in 1995, mostly after oilseed rape, tested effects of previous fertilizer N (differing by 200 kg/ha for 1993 and 1994 and 300 kg/ha for 1995) and date of sowing (differing by about 2 months) on soil mineral N and N uptake by winter wheat cv. Mercia which received no fertilizer N. Soil mineral N to 90 cm plus crop N (‘soil N supply’; SNS) in February was 103 and 76 kg/ha after large and small amounts of previous fertilizer N respectively but was not affected by date of sowing. Previous fertilizer N seldom affected crop N in spring because sowing was too late for N capture during autumn, but it did affect soil mineral N, particularly in the 60–90 cm soil horizon, presumably due to over-winter leaching. Tillering generally occurred in spring, and was delayed but not diminished by later sowing. Previous fertilizer N increased shoot survival more than it increased shoot production. Final shoot number was affected by previous fertilizer N, but not by date of sowing. Overall, there were 29 surviving tillers/g SNS.N uptakes at fortnightly intervals from spring to harvest at two core sites were described well by linear rates. The difference between sowings in the fitted date with 10 kg/ha crop N was 1 month; these dates were not significantly affected by previous fertilizer. N uptake rates were increased by both previous fertilizer N and late sowing. Rates of N uptake related closely to soil mineral N in February such that ‘equivalent recovery’ was achieved in late May or early June. At one site there was evidence that most of the residue from previous fertilizer N had moved below 90 cm by February, but N uptake was nevertheless increased. Two further ‘satellite’ sites behaved similarly. Thus at 14 out of 17 sites, N uptake until harvest related directly and with approximate parity to soil mineral N in February (R2 = 0·79), a significant intercept being in keeping with an atmospheric contribution of 20–40 kg/ha N at all sites.It is concluded that, on retentive soils in the UK, SNS in early spring was a good indicator of N availability throughout growth of unfertilized wheat, because the N residues arising from previous fertilizer mineralized before analysis, yet remained largely within root range. The steady rates of soil mineral N recovery were taken as being dependent on progressively deeper root development. Thus, even if soil mineral N equated with a crop's N requirement, fresh fertilizer applications might be needed before ‘equivalent recovery’ of soil N, to encourage the earlier processes of tiller production and canopy expansion. The later process of grain filling was sustained by continued N uptake (mean 41 kg/ha) coming apparently from N leached to the subsoil (relating to previous fertilizer use) as well as from sources not related to previous fertilizer use; significant net mineralization was apparent in some subsoils.


Sign in / Sign up

Export Citation Format

Share Document