Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize/mungbean intercropping

1994 ◽  
Vol 122 (2) ◽  
pp. 193-199 ◽  
Author(s):  
M. K. Chowdhury ◽  
E. L. Rosario

SUMMARYEffects of rhizobial inoculation and applied nitrogen on the utilization efficiency of N, P and K were studied in relation to the yield advantage in additive maize/mungbean intercrops at Los Baños, Philippines in 1988. Inoculation increased grain yield of both maize (Zea mays L.) and mungbean (Vigna radiata (L.) Wilczek). Yield of maize increased by 60% in the sole crop and 71% in the intercrop as the N application rate was increased from 0 to 90 kg/ha, with a corresponding decrease of 29–35% in the yield of the associated mungbean. Intercropping reduced mungbean yield by 35–57%; maize was less affected. Inoculation also improved the land equivalent ratio (LER). The highest LER (1·49) was obtained at 30 kg N/ha with inoculation.Nutrient absorption by both maize and mungbean was reduced due to intercropping, mungbean being more affected than maize. The reductions in the N absorption efficiency of maize ranged from 4 to 37% and those of mungbean from 37 to 58%. Increases in N rate increased N absorption of maize but caused greater reductions in N absorption of mungbean. Reductions in P absorption by intercropped maize declined with increases in applied N and with inoculation. Inoculation, however, had a lesser effect on K absorption efficiency.Land equivalent ratio analysis in terms of N, P and K utilization efficiency showed that the increase in LER over unity was due largely to a higher total uptake of nutrients by the component crops in the mixture than by the sole crops. The greater efficiency of intercrops than of the sole crops in converting absorbed nutrients to grains also contributed to the yield advantage.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wan-feng Zhang ◽  
Shu-qing Yang ◽  
Ya-hong Jin ◽  
Peng Liu ◽  
Shuai Lou

AbstractTo provide an appropriate tillage fertilization model for improving N utilization efficiency and increasing production, the field experiments were conducted to study the effects on root distributions and N utilization efficiency of summer maize involving different straw mulching modes combined with N fertilization. No (N0), low (N1), medium (N2), and high (N3) levels of N fertilization were incorporated into soil combined with the surface coverage straw (Treatment B) and the deeply buried straw (Treatment S). The traditional cultivation was used as control treatment. The results shown that treatments S had significantly promoted deep root growth, and the root length density (RLD) increased with increases in N application rate. SN2 and SN3 treatments’ average RLD were significantly increased by 67.5% and 68.1% in the greater than 40 cm soil layers. While the Treatment B had significantly increased the RLD in 0 –30 cm soil layers only. With increases in N application rate, the effect on summer maize yields increase under Treatment B were not significantly, and only BN3 increased by 0.4%, while under Treatments S were found to first increase, and then decrease. The apparent recovery efficiency of applied N, N uptake and summer maize yield of SN2 had increased by 66.8%, 20.4%, and 9.3%. Therefore the rational tillage fertilization model was deeply buried straw combined with medium N fertilizer in Hetao Irrigation District.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 386 ◽  
Author(s):  
Haiyong Xia ◽  
Weilin Kong ◽  
Lan Wang ◽  
Yanhui Xue ◽  
Wenlong Liu ◽  
...  

Zinc (Zn) deficiency is a global nutritional problem that is reduced through agronomic biofortification. In the current study, the effects of foliar spraying of exogenous ZnSO4·7H2O (0.2% in Quzhou and 0.3% in Licheng, w/v) and/or sucrose (10.0%, w/v) on maize (Zea mays L.) agronomic traits; concentrations of Zn, iron (Fe), calcium (Ca), total phosphorus (P), phytic acid (PA) P, carbon (C), and nitrogen (N); C/N ratios; and Zn and Fe bioavailability (as evaluated by molar ratios of PA/Zn, PA × Ca/Zn, PA/Fe and PA × Ca/Fe) in maize grains were studied under field conditions for two years at two experimental locations. The results confirmed that there were no significant differences in maize agronomic traits following the various foliar treatments. Compared with the control treatment of foliar spraying with deionized water, foliar applications of Zn alone or combined with sucrose significantly increased maize grain Zn concentrations by 29.2–58.3% in Quzhou (from 18.4–19.9 to 25.2–29.6 mg/kg) and by 39.8–47.8% in Licheng (from 24.9 to 34.8–36.8 mg/kg), as well as its bioavailability. No significant differences were found between the foliar spraying of deionized water and sucrose, and between Zn-only and “sucrose + Zn” at each N application rate and across different N application rates and experimental sites. Similar results were observed for maize grain Fe concentrations and bioavailability, but the Fe concentration increased to a smaller extent than Zn. Foliar Zn spraying alone or with sucrose increased maize grain Fe concentrations by 4.7–28.4% in Quzhou (from 13.4–17.1 to 15.2–18.5 mg/kg) and by 15.4–25.0% in Licheng (from 24.0 to 27.7–30.0 mg/kg). Iron concentrations were significantly and positively correlated with Zn at each N application rate and across different N application rates and experimental locations, indicating that foliar Zn spraying facilitated the transport of endogenous Fe to maize grains. Therefore, foliar Zn spraying increased the Zn concentration and bioavailability in maize grains irrespective of foliar sucrose supply while also improving Fe concentrations and bioavailability to some extent. This is a promising agricultural practice for simultaneous Zn and Fe biofortification in maize grains, i.e., “killing two birds with one stone”.


2018 ◽  
Vol 210 ◽  
pp. 330-339 ◽  
Author(s):  
Wenli Qin ◽  
Xiying Zhang ◽  
Suying Chen ◽  
Hongyong Sun ◽  
Liwei Shao

1992 ◽  
Vol 28 (3) ◽  
pp. 255-263 ◽  
Author(s):  
Mrinal K. Chowdhury ◽  
Elpidio L. Rosario

SummaryThe effects of component population, rhizobial inoculation and applied nitrogen on the efficiency of phosphorus utilization in maize/mungbean intercropping were examined in two experiments. The efficiency of phosphorus absorption decreased by between 5 and 43% in maize and by between 31 and 58% in mungbean as a result of intercropping. The overall efficiency of phosphorus absorption in intercropping decreased with increasing nitrogen level but a parallel increase in overall conversion efficiency maintained a constant and large land equivalent ratio (LER) up to the highest level of nitrogen. The increase in LER over unity, however, was due primarily to the greater total absorption of phosphorus by maize and mungbean together in intercropping compared with that when they were grown in pure stands.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 572 ◽  
Author(s):  
Weijin Wang ◽  
Glen Park ◽  
Steven Reeves ◽  
Megan Zahmel ◽  
Marijke Heenan ◽  
...  

Nitrous oxide (N2O) emissions from sugarcane cropped soils are usually high compared with those from other arable lands. Nitrogen-efficient management strategies are needed to mitigate N2O emissions from sugarcane farming whilst maintaining productivity and profitability. A year-long field experiment was conducted in wet tropical Australia to assess the efficacy of polymer-coated urea (PCU) and nitrification inhibitor (3,4-dimethylpyrazole phosphate)-coated urea (NICU). Emissions of N2O were measured using manual and automatic gas sampling chambers in combination. The nitrogen (N) release from PCU continued for >5–6 months, and lower soil NO3– contents were recorded for≥3 months in the NICU treatments compared with the conventional urea treatments. The annual cumulative N2O emissions were high, amounting to 11.4–18.2kg N2O-Nha–1. In contrast to findings in most other cropping systems, there were no significant differences in annual N2O emissions between treatments with different urea formulations and application rates (0, 100 and 140kgNha–1). Daily variation in N2O emissions at this site was driven predominantly by rainfall. Urea formulations did not significantly affect sugarcane or sugar yield at the same N application rate. Decreasing fertiliser application rate from the recommended 140kgNha–1 to 100kgNha–1 led to a decrease in sugar yield by 1.3tha–1 and 2.2tha–1 for the conventional urea and PCU treatments, respectively, but no yield loss occurred for the NICU treatment. Crop N uptake also declined at the reduced N application rate with conventional urea, but not with the PCU and NICU. These results demonstrated that substituting NICU for conventional urea may substantially decrease fertiliser N application from the normal recommended rates whilst causing no yield loss or N deficiency to the crop. Further studies are required to investigate the optimal integrated fertiliser management strategies for sugarcane production, particularly choice of products and application time and rates, in relation to site and seasonal conditions.


2017 ◽  
Vol 169 ◽  
pp. 118-123 ◽  
Author(s):  
Veronica Muñoz-Romero ◽  
Rafael J. Lopez-Bellido ◽  
Purificacion Fernandez-Garcia ◽  
Ramon Redondo ◽  
Sergio Murillo ◽  
...  

2012 ◽  
Vol 151 (3) ◽  
pp. 347-367 ◽  
Author(s):  
J. P. LYNCH ◽  
P. O'KIELY ◽  
E. M. DOYLE

SUMMARYThe objectives of the present study were to determine the effects of nitrogen (N) application rate, harvest date and maize cultivar on the yield, quality and the subsequent conservation characteristics of whole-crop, cob and stover silages. The experiment was organized in a spilt-plot design, with harvest date (15 September, 6 October and 27 October) as the main plot, and a three (maize cultivars: Tassilo, Andante and KXA 7211)×two (N application rate: 33 and 168 kg N/ha) factorial arrangement of treatments as the sub-plot, within three replicate blocks, and was conducted at Grange, Dunsany, Co. Meath, Ireland in 2009. The three harvest dates represented early, normal and late harvests, respectively, for a midland site in Ireland. Of the three maize cultivars selected, cvars Tassilo and Andante represent conventional cultivars sown by commercial livestock farmers in Ireland, while cvar KXA 7211 is categorized as a high biomass cultivar. No effect of N application rate was observed on the dry matter (DM) yield, nutritive value or ensiling characteristics of maize whole-crop or cob. Whole-crop and stover harvested on the later date had a lower digestible DM (DDM) content and the silages underwent a more restricted fermentation, compared to silages produced from herbage harvested on earlier dates. Cob silages produced from crops harvested on 15 September had lower DDM content and higher DM loss during ensiling than later harvest dates. Despite higher whole-crop DM yields, the later maturing cultivar KXA 7211 did not improve the DM yields of cob and also resulted in increased DM losses from the ensilage of cob, when compared with the other cultivars. In addition to the DM yield and nutritive value of forage maize at harvest, the subsequent fermentation profile during ensilage influences the optimum choice of cultivar and date for crop harvest in a maize silage production system.


Sign in / Sign up

Export Citation Format

Share Document