Reliability of current Spanish irrigation designs in a changed climate: a case study

2010 ◽  
Vol 149 (2) ◽  
pp. 171-183 ◽  
Author(s):  
A. UTSET ◽  
B. DEL RÍO

SUMMARYA very serious effort to modernize irrigation systems is being made in Spain, to reduce water and energy losses in an environmentally sustainable way. This is expensive and it is important that the new irrigation systems work properly over a long period. The systems have been designed taking into account historical evapotranspiration (ET) averages during the months of maximum demand, as well as the crop-specific ET values (Kc coefficients) of typical crops. However, the increase in ET rates due to global warming could mean that the capacity of these new and expensive irrigation systems to fulfil the crop water requirements may be exceeded in the near future. However, the expected increase in CO2 concentration could diminish crop transpiration rates for similar water demands from the atmosphere, thereby reducing irrigation requirements. A methodology was developed in order to estimate crop water requirements under climate change conditions. The reliability of a new irrigation system designed in Valladolid, Northern Spain was tested. The regionalized climate change scenarios for Valladolid, provided by the National Institute of Meteorology, were used for the periods 2011–40, 2041–70 and 2071–2100 and the A2 and B2 emission scenarios were considered using the ECHAM and coupled general circulation model (CGCM) global circulation models. A historical series of daily meteorological data for Valladolid was used to generate statistical ET distributions through the LARS-WG generator. Simulations considered each of the above periods, global circulation models (GCM) and emission scenarios. Furthermore, the Kc of the typical irrigated crops of the zone (maize, potato and sugar beet) were reduced for each period, GCM and emission scenario according to the relationships between CO2 concentrations and transpiration obtained by Kruijt et al. (2008). The results indicated that, on average, historical ET rates provide a sufficiently robust indicator to enable estimations of the crop ET in the future, particularly considering the CO2 effect in reducing crop transpiration. However, ET variability is significantly increased after 2040, especially for the A2 emission scenario. The results show that ET variability rather than global increase is the most serious risk that current irrigation systems must face in the near future in Northern Spain, as consequence of climate change. Such variability should be included in irrigation designs.

2018 ◽  
Vol 3 (4) ◽  
pp. 117 ◽  
Author(s):  
Guo-Jing Yang ◽  
Robert Bergquist

Based on an ensemble of global circulation models (GCMs), four representative concentration pathways (RCPs) and several ongoing and planned Coupled Model Intercomparison Projects (CMIPs), the Intergovernmental Panel on Climate Change (IPCC) predicts that global, average temperatures will increase by at least 1.5 °C in the near future and more by the end of the century if greenhouse gases (GHGs) emissions are not genuinely tempered. While the RCPs are indicative of various amounts of GHGs in the atmosphere the CMIPs are designed to improve the workings of the GCMs. We chose RCP4.5 which represented a medium GHG emission increase and CMIP5, the most recently completed CMIP phase. Combining this meteorological model with a biological counterpart model accounted for replication and survival of the snail intermediate host as well as maturation of the parasite stage inside the snail at different ambient temperatures. The potential geographical distribution of the three main schistosome species: Schistosoma japonicum, S. mansoni and S. haematobium was investigated with reference to their different transmission capabilities at the monthly mean temperature, the maximum temperature of the warmest month(s) and the minimum temperature of the coldest month(s). The set of six maps representing the predicted situations in 2021–2050 and 2071–2100 for each species mainly showed increased transmission areas for all three species but they also left room for potential shrinkages in certain areas.


2014 ◽  
Vol 14 (12) ◽  
pp. 5893-5904 ◽  
Author(s):  
D. Lauwaet ◽  
P. Viaene ◽  
E. Brisson ◽  
N.P.M. van Lipzig ◽  
T. van Noije ◽  
...  

Abstract. Belgium is one of the areas within Europe experiencing the highest levels of air pollution. A high-resolution (3 km) modelling experiment is employed to provide guidance to policymakers about expected air quality changes in the near future (2026–2035). The regional air quality model AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), driven by output from a regional climate model, is used to simulate several 10-year time slices to investigate the impact of climatic changes and different emission scenarios on near-surface O3 concentrations, one of the key indices for air quality. Evaluation of the model against measurements from 34 observation stations shows that the AURORA model is capable of reproducing 10-year mean concentrations, daily cycles and spatial patterns. The results for the Representative Concentration Pathways (RCP)4.5 emission scenario indicate that the mean surface O3 concentrations are expected to increase significantly in the near future due to less O3 titration by reduced NOx emissions. Applying an alternative emission scenario for Europe is found to have only a minor impact on the overall concentrations, which are dominated by the background changes. Climate change alone has a much smaller effect on the near-surface O3 concentrations over Belgium than the projected emission changes. The very high horizontal resolution that is used in this study results in much improved spatial correlations and simulated peak concentrations compared to a standard 25 km simulation. An analysis of the number of peak episodes during summer revealed that the emission reductions in RCP4.5 result in a 25% decrease of these peak episodes.


2014 ◽  
Vol 14 (2) ◽  
pp. 1761-1790
Author(s):  
D. Lauwaet ◽  
P. Viaene ◽  
E. Brisson ◽  
T. van Noije ◽  
A. Strunk ◽  
...  

Abstract. Belgium is one of the areas within Europe experiencing the highest levels of air pollution. To provide insight to policy makers about expected changes in the air quality towards the near future (2026–2035), a high resolution (3 km) modelling experiment is set up. The regional air quality model AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), driven by output from a regional climate model, is used to simulate several 10-yr time slices to investigate the impact of climatic changes and different emission scenarios on near-surface O3 concentrations, one of the key indices for air quality. Model evaluation against measurements from 34 observation stations shows that the AURORA model is capable of reproducing 10-yr mean concentrations, daily cycles and spatial patterns. The results for the RCP4.5 emission scenario indicate that the mean surface O3 concentrations are expected to increase significantly in the near future due to less O3 titration by reduced NOx emissions. Applying an alternative emission scenario for Europe is found to have only a minor impact on the overall concentrations, which are dominated by the background changes. Climate change alone has a much smaller effect on the near-surface O3 concentrations over Belgium than the projected emission changes. The very high horizontal resolution that is used in this study results in much improved spatial correlations and simulated peak concentrations compared to a standard 25 km simulation. This allows to investigate the number of peak episodes during summer, which are found to be reduced with 25% by the emission reductions in RCP4.5.


2021 ◽  
Vol 255 ◽  
pp. 107005
Author(s):  
Sara Masia ◽  
Antonio Trabucco ◽  
Donatella Spano ◽  
Richard L. Snyder ◽  
Janez Sušnik ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 416
Author(s):  
Barbara Jagosz ◽  
Stanisław Rolbiecki ◽  
Roman Rolbiecki ◽  
Ariel Łangowski ◽  
Hicran A. Sadan ◽  
...  

Climate warming increases the water needs of plants. The aim of this study was to estimate the water needs of grapevines in central Poland. Water needs were calculated using the crop coefficients method. Reference evapotranspiration was assessed by the Blaney–Criddle’s equation, modified for climate conditions in Poland. Crop coefficients were assumed according to the Doorenbos and Pruitt method. Water needs were calculated using the data from four meteorological stations. Rainfall deficit with the probability occurrence of normal years, medium dry years, and very dry years was determined by the Ostromęcki’s method. Water needs of grapevines during the average growing season were estimated at 438 mm. Upward time trend in the water needs both in the period of May–October and June–August was estimated. Temporal variability in the water needs was significant for all of the provinces. These changes were mainly impacted by a significant increasing tendency in mean air temperature and less by precipitation totals that did not show a clear changing tendency. Due to climate change, vineyards will require irrigation in the near future. The use of resource-efficient irrigation requires a precise estimate of the grapevines’ water needs. The study identified the water requirements for grapevines in central Poland.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Renato de Oliveira Fernandes ◽  
Cleiton da Silva Silveira ◽  
Ticiana Marinho de Carvalho Studart ◽  
Francisco de Assis de Souza Filho

ABSTRACT Climate changes can have different impacts on water resources. Strategies to adapt to climate changes depend on impact studies. In this context, this study aimed to estimate the impact that changes in precipitation, projected by Global Circulation Models (GCMs) in the fifth report by the Intergovernmental Panel on Climate Change (IPCC-AR5) may cause on reservoir yield (Q90) of large reservoirs (Castanhão and Banabuiú), located in the Jaguaribe River Basin, Ceará. The rainfall data are from 20 GCMs using two greenhouse gas scenarios (RCP4.5 and RCP8.5). The precipitation projections were used as input data for the rainfall-runoff model (SMAP) and, after the reservoirs’ inflow generation, the reservoir yields were simulated in the AcquaNet model, for the time periods of 2040-2069 and 2070-2099. The results were analyzed and presented a great divergence, in sign (increase or decrease) and in the magnitude of change of Q90. However, most Q90 projections indicated reduction in both reservoirs, for the two periods, especially at the end of the 21th century.


2019 ◽  
Vol 8 (1) ◽  
pp. 94
Author(s):  
Stulina Galina ◽  
Solodkiy Georgy ◽  
Eshtchanov Odilbek

Khorezm province is located in the northwest part of Uzbekistan in the basin of one of largest water sources – the Amu Darya River - and occupies the left bank in the Amu Darya lower reaches. The area of the province is 6,100 km2. The province borders Karakalpakstan in the North, Turkmenistan in the South, and Bukhara province of Uzbekistan in the South-East. Uzbekistan is situated in the territory, where high rates of climate change are expected and observed. According to forecasts, further climate change would cause even higher air temperatures, altered precipitation patterns and severe and prolonged droughts, with consequent lowering of available water resources. More plausible scenarios for Uzbekistan suggest more than 4°С rise in average annual air temperatures by 2080. Water discharge along the Amu Darya River is expected to decrease potentially by 10-15%. Objective of given work is to analyze and assess the positive impacts of climate change through alterations of bioclimatic potential in given terrain and agromelioration parameters of crops, with consequent changes in crop water requirements. Earlier research results showed that the observed growth of thermal potential allows earlier sowing and more rapid accumulation of effective temperatures. This will shorten plant development phases, on the one hand, and, as a result, reduce water use by crops, on the other hand.


Author(s):  
V. U. M. Rao ◽  
A. V. M. S. Rao ◽  
G. G. S. N. Rao ◽  
T. Satyanarayana ◽  
N. Manikandan ◽  
...  

2011 ◽  
Vol 15 (33) ◽  
pp. 1-17 ◽  
Author(s):  
Daniel E. Christiansen ◽  
Steven L. Markstrom ◽  
Lauren E. Hay

AbstractUnderstanding the effects of climate change on the vegetative growing season is key to quantifying future hydrologic water budget conditions. The U.S. Geological Survey modeled changes in future growing season length at 14 basins across 11 states. Simulations for each basin were generated using five general circulation models with three emission scenarios as inputs to the Precipitation-Runoff Modeling System (PRMS). PRMS is a deterministic, distributed-parameter, watershed model developed to simulate the effects of various combinations of precipitation, climate, and land use on watershed response. PRMS was modified to include a growing season calculation in this study. The growing season was examined for trends in the total length (annual), as well as changes in the timing of onset (spring) and the end (fall) of the growing season. The results showed an increase in the annual growing season length in all 14 basins, averaging 27–47 days for the three emission scenarios. The change in the spring and fall growing season onset and end varied across the 14 basins, with larger increases in the total length of the growing season occurring in the mountainous regions and smaller increases occurring in the Midwest, Northeast, and Southeast regions. The Clear Creek basin, 1 of the 14 basins in this study, was evaluated to examine the growing season length determined by emission scenario, as compared to a growing season length fixed baseline condition. The Clear Creek basin showed substantial variation in hydrologic responses, including streamflow, as a result of growing season length determined by emission scenario.


Sign in / Sign up

Export Citation Format

Share Document