The effect of over 50 years of liming on soil aluminium forms in a Retisol

2019 ◽  
Vol 157 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Z. Kryzevicius ◽  
D. Karcauskiene ◽  
E. Álvarez-Rodríguez ◽  
A. Zukauskaite ◽  
A. Slepetiene ◽  
...  

AbstractThe aim of the current study was to evaluate the effect of long-term (56 years) liming on changes in soil pH and aluminium (Al) forms in the soil profile compared with an unlimed soil in a sandy moraine loam of a Dystric Glossic Retisol. Long-term liming had a significant influence on soil acidity of the whole profile, causing increased pH values in the following horizons to 120 cm depth: the ploughing horizon (Ahp), where humus accumulates; the eluvial horizon (E), from which clay particles are leached; a horizon having retic properties and predominantly coarser-textured albic material (E/B); and a horizon with retic properties and predominantly finer-textured argic material (B/E). In the solid phase, non-crystalline Al in limed soil decreased in the Ahp horizon; meanwhile a decrease in total organically bound Al (Alp) and organo–Al complexes of low to medium stability was detected in the deeper El and ElBt horizons. High-stability Al complexes with organic matter were the predominant form of Alp in the unlimed and limed whole soil profile. The concentration of total water-soluble Al ranged from 0.61 to 0.80 mg/l in the limed soil profile but 0.62–1.15 mg/l in the unlimed soil. The highest concentration of exchangeable Al was determined in the upper horizons of the unlimed soil profile and the concentration decreased significantly in the same horizons of the limed soil profile. Long-term liming promoted changes in Al compounds throughout the soil profile.

2011 ◽  
Vol 35 (5) ◽  
pp. 1827-1836 ◽  
Author(s):  
Cledimar Rogério Lourenzi ◽  
Carlos Alberto Ceretta ◽  
Leandro Souza da Silva ◽  
Gustavo Trentin ◽  
Eduardo Girotto ◽  
...  

Pig slurry application as soil manure can alter the chemical properties of the soil and affect its acidity, modifying the environment for crop growth and development. The objective of this study was to evaluate the chemical properties related to soil acidity subjected to successive applications of pig slurry. The experiment was conducted in May 2000, in an experimental area of the Federal University of Santa Maria (UFSM) under no-tillage and lasted until January 2008. Nineteen surface applications of 0, 20, 40, and 80 m³ ha-1 of pig slurry were performed, during a period of 100 months and the soil sampled in the end (layers 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, 18-20, 20-25, 25-30, 30-35, 35-40, 40-50 and 50-60 cm). The application of pig slurry increased soil pH values, an effect that could reach the depth of 8 cm without affecting the potential acidity values. The applications also resulted in accumulation of Ca and Mg exchangeable levels in the surface layers, increasing base saturation and reducing Al saturation. Long-term applications induced an increase in organic matter in the deeper layers. However, the effect of this residue on the potential CEC was less significant and restricted to the surface layers.


2018 ◽  
Vol 9 (1) ◽  
pp. 130
Author(s):  
Anatoly A. DORDZHIEV ◽  
Anatoly G. DORDZHIEV ◽  
Mergen M. SANGADZHIEV ◽  
Leonid M. RUBEKO ◽  
Victor A. ONKAEV

Knowledge of soils types in a certain area allows to predict the stability of the system. Therefore, the purpose of the work is to determine the salt composition of clayey soils and its variation with long-term water filtration, for example, the Republic of Kalmykia. For a detailed study of the topic, the authors carried out various experiments that were based on physico-chemical analyzes of samples and monoliths selected from different regions of Kalmykia. For this, water-soluble salts found in clay soils were considered. Basically, these are three groups: readily soluble, mildly soluble and hardly soluble. Chemical analyzes of chloride, sulphate and carbonate salts of sodium, potassium, magnesium and calcium were conducted on the basis of the Kalmyk State University. Separately attention was paid to the ion-exchange process and, in particular, to the transition from the solid phase to the pore solution. In connection with the strong mineralization of groundwater in the republic, the monoliths are mineralized to 10-20 g / l and in terms of chemical composition, chloride-sodium and sulfate-chloride. Calcium carbonates and gypsum are considered separately depending on the depth of the monolith. On the basis of the experiments carried out, plots of the dependence were plotted in different mineral constituents. It has been established that in gypsum and gypsum-bearing rocks the correlation coefficients for loam and sandy loam are low. The desalinization factor is more than 50%, and the desalinization is uneven in all monoliths taken from different depths. In sandy loam these parameters are lower by 20%. Separately, the parameters of exchange of mineral, disperse composition and the presence of organic substances are considered. The results will allow engineers, designers, practitioners and students to use the results in their daily work.


2008 ◽  
Vol 53 (No. 11) ◽  
pp. 482-489 ◽  
Author(s):  
V. Mrvić ◽  
M. Jakovljević ◽  
D. Stevanović ◽  
D. Čakmak

The interactive relations of Al forms and the most important characteristics of Stagnosols were researched to diagnose which factors are the best to control the content of phytotoxic Al forms. The values of exchangeable Al (Al<sub>KCl</sub>) range from 0.0 to 560.7 mg/kg and increase with depth. The variation of exchangeable Al is high and it depends on the changes of all forms of soil acidity and the degree of base cation saturation. Their relation is best described by a non-linear function. The contents of total Al and Al extracted by ammonium oxalate in dark (Al amorphous, Al<sub>oxa</sub>) increase with depth, together with the increase of the content of clay particles. The values of Al extracted by sodium citrate/dithionite (Al crystalline, Al<sub>dit</sub>), 0.5M CuCl<sub>2</sub> (Al<sub>Cu</sub>) and 0.25M EDTA (Al<sub>EDTA</sub>) are in good correlation and they predominantly depend on the parameters of soil acidity. The value of Al<sub>Cu</sub>-Al<sub>KCl</sub> (in eluvial horizons) is best represented by organically bound Al. Effects of the reserves of aluminium Al<sub>dit</sub>, Al<sub>Cu</sub> and Al<sub>EDTA</sub> on the changes of exchangeable Al are higher (medium and high correlation), while the effects of the total Al and Al<sub>oxa</sub> are lower.


1996 ◽  
Vol 47 (1) ◽  
pp. 97 ◽  
Author(s):  
RA Stephenson ◽  
RL Aitken ◽  
EC Gallagher ◽  
PW Moody

Macadamia growers have responded to increasing soil acidity in plantations by applying ameliorants, but optimum pH for production has not been identified. The effects of lime applications on the growth, yield and leaf composition of macadamia (Macadamia integrifolia Maiden and Betch) trees were investigated at each of two sites (Pomona and Cootharaba) with acidic sandy soils in south-east Queensland. Trees at the Pomona site had been established for 6 years whereas, at Cootharaba, the trees had been recently planted. The effects of annual applications of nitrogen and nitrogen plus lime were also studied at the Cootharaba site. Tree parameters and soil properties were monitored each year for 5 years after treatment application in 1988. Treatments resulted in pH (water) values ranging from 4.6 to 7.5 and 4.3 to 6.5 at the Pomona and Cootharaba sites, respectively. with a concomitant range in soil Ca and A1 levels. Despite the wide range in soil properties, lime had no significant (P < 0.05) effect on nut-in-shell yield in any year, and the results suggest that macadamia is relatively tolerant of soil acidity. However, yields from treatments with pH values greater than 5.5 tended to be lower than those with more acidic pH values, suggesting that overliming may adversely affect long-term productivity. High lime rates also resulted in a marked reduction in the number of proteoid roots. At the Cootharaba site, nitrogen treatments significantly (P < 0.05) increased nut-in-shell yield despite the juvenile growth stage of the trees precluding nut yield until the 1993 season. Although lime applications at the Cootharaba site resulted in some increase in leaf Ca concentrations, treatments at the Pomona site, with older trees, had little effect on leaf nutrient composition.


1967 ◽  
Vol 47 (3) ◽  
pp. 203-210 ◽  
Author(s):  
L. B. MacLeod ◽  
L. P. Jackson

The concentration of water-soluble and exchangeable aluminum was determined in the 0–15-, 15–23-, 23–30- and 30–45-cm depths of a Podzol limed to provide surface soil pH values ranging from 4.5 to 7.2. Both soluble and exchangeable Al decreased with increasing soil pH. Soluble Al ranged from 5.7 ppm at pH 4.4 with high fertilization to 0.3 ppm at pH 6.5 with similar fertilization. Increasing the rate of fertilization at pH 4.5 raised the soluble Al from 2.6 to 5.7 ppm. Fertilization still doubled the soluble Al in soil at pH 5.1 but had little effect as the pH was raised further to 5.8 and 6.5. Soluble Al in the subsoil samples was less than in surface soil samples at the same pH, while with exchangeable Al, the concentration was greater in the subsoil than in the surface soil samples.There was not a direct relationship between pH and soluble Al, although the highest soluble Al concentrations occurred at lowest soil pH levels. Analyses of 30 representative samples of surface soil taken from farmers' fields showed that the soluble Al concentration at pH 4.0 ranged from 3.5 to 4.8 ppm, while at a pH of 5.0 it ranged from 0.2 to 2.8 ppm. The concentrations of soluble Al in many of these soils exceeded the levels previously shown by nutrient solution experiments to severely restrict growth of legumes and some varieties of barley.


2016 ◽  
Author(s):  
T. Klotzbücher ◽  
K. Kalbitz ◽  
C. Cerli ◽  
P. J. Hernes ◽  
K. Kaiser

Abstract. Uncertainties concerning stabilization of organic compounds in soil limit our basic understanding on soil organic matter (SOM) formation and our ability to model and manage effects of global change on SOM stocks. One controversially debated aspect is the contribution of aromatic litter components, such as lignin and tannins, to stable SOM forms. In the present opinion paper, we summarize and discuss the inconsistencies and propose research options to clear them. Lignin degradation takes place step-wise, starting with (i) depolymerisation, followed by (ii) transformation of the water-soluble depolymerization products. The long-term fate of the depolymerization products and other soluble aromatics, e.g., tannins, in the mineral soils is still a mystery. Research on dissolved organic matter (DOM) composition and fluxes indicates dissolved aromatics are important precursors of stable SOM attached to mineral surfaces and persist in soils for centuries to millennia. Evidence comes from flux analyses in soil profiles, biodegradation assays, and sorption experiments. In contrast, studies on composition of mineral-associated SOM indicate the prevalence of non-aromatic microbialderived compounds. Other studies suggest the turnover of lignin in soil can be faster than the turnover of bulk SOM. Mechanisms that can explain the apparent fast disappearance of lignin in mineral soils are, however, not yet identified. The contradictions might be explained by analytical problems. Commonly used methods probably detect only a fraction of the aromatics stored in the mineral soil. Careful data interpretation, critical assessment of analytical limitations, and combined studies on DOM and solid-phase SOM could thus be ways to unveil the issues.


2020 ◽  
Author(s):  
Michael J. Braus ◽  
Thea Whitman

AbstractDatabases of soil pH values today guide the decisions of land managers and the experimental designs of microbiologists and biogeochemists. Soil acidity underpins fundamental properties and functions in the soil, such as the solubilities of exchangeable ions and nutrients, or bacterial use of gradients of internal and external acidity to generate ATP and turn flagellar motors. Therefore, it is perhaps unsurprising that soil pH has emerged as the strongest predictor of soil bacterial community composition. However, the measurement of these particular values today does not address whether soil pH accurately represents the in situ acidity of soil microhabitats where microorganisms survive and reproduce. This study analyzes and compares soils of a large-scale natural soil pH gradient and a long-term experimental soil pH gradient for the purposes of testing new methods of measuring and interpreting soil acidity when applied to soil ecology. We extracted and prepared soil solutions using laboratory simulation of levels of carbon dioxide and soil moisture more typical of soil conditions while also miniaturizing extraction methods using a centrifuge for extractions. The simulation of in situ soil conditions resulted in significantly different estimates of soil pH. Furthermore, for soils from the long-term experimental soil pH gradient trial, the simulated soil pH values substantially improved predictions of bacterial community composition (from R2 = 0.09 to R2 = 0.16). We offer suggestions and cautions for researchers considering how to better represent soil pH as it exists in situ.


SOIL ◽  
2016 ◽  
Vol 2 (3) ◽  
pp. 325-335 ◽  
Author(s):  
Thimo Klotzbücher ◽  
Karsten Kalbitz ◽  
Chiara Cerli ◽  
Peter J. Hernes ◽  
Klaus Kaiser

Abstract. Uncertainties concerning stabilization of organic compounds in soil limit our basic understanding on soil organic matter (SOM) formation and our ability to model and manage effects of global change on SOM stocks. One controversially debated aspect is the contribution of aromatic litter components, such as lignin and tannins, to stable SOM forms. In the present opinion paper, we summarize and discuss the inconsistencies and propose research options to clear them. Lignin degradation takes place stepwise, starting with (i) depolymerization and followed by (ii) transformation of the water-soluble depolymerization products. The long-term fate of the depolymerization products and other soluble aromatics, e.g., tannins, in the mineral soils is still a mystery. Research on dissolved organic matter (DOM) composition and fluxes indicates dissolved aromatics are important precursors of stable SOM attached to mineral surfaces and persist in soils for centuries to millennia. Evidence comes from flux analyses in soil profiles, biodegradation assays, and sorption experiments. In contrast, studies on composition of mineral-associated SOM indicate the prevalence of non-aromatic microbial-derived compounds. Other studies suggest the turnover of lignin in soil can be faster than the turnover of bulk SOM. Mechanisms that can explain the apparent fast disappearance of lignin in mineral soils are, however, not yet identified. The contradictions might be explained by analytical problems. Commonly used methods probably detect only a fraction of the aromatics stored in the mineral soil. Careful data interpretation, critical assessment of analytical limitations, and combined studies on DOM and solid-phase SOM could thus be ways to unveil the issues.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1714
Author(s):  
Paweł Wiśniewski

This study presents the general characteristics of binders used in precision casting of Nickel-based superalloys. Three groups of binders were described: resins, organic compounds, and materials containing nanoparticles in alcohol or aqueous systems. This study also includes literature reports on materials commonly used and those recently replaced by water-soluble binders, i.e., ethyl silicate (ES) and hydrolysed ethyl silicate (HES). The appearance of new and interesting solutions containing nano-alumina is described, as well as other solutions at the initial stage of scientific research, such as those containing biopolymers, biodegradable polycaprolactone (PCL), or modified starch. Special attention is paid to four binders containing nano-SiO2 intended for the first layers (Ludox AM, Ludox SK) and structural layers (EHT, Remasol) of shell moulds. Their morphology, viscosity, density, reactions, and electrokinetic potential were investigated. The binders were characterized by a high solid-phase content (>28%), viscosity, and density close to that of water (1–2 mPa·s) and good electrokinetic stability. The nanoparticles contained in the binders were approximately spherically shaped with an average particle size of 16–25 nm.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 294
Author(s):  
Raymond H. Johnson ◽  
Susan M. Hall ◽  
Aaron D. Tigar

At a former uranium pilot mill in Grand Junction, Colorado, mine tailings and some subpile sediments were excavated to various depths to meet surface radiological standards, but residual solid-phase uranium below these excavation depths still occurs at concentrations above background. The combination of fission-track radiography and scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDS) provides a uniquely efficient and quantitative way of determining mineralogic associations of uranium that can influence uranium mobility. After the creation of sample thin sections, a mica sheet is placed on those thin sections and irradiated in a nuclear research reactor. Decay of the irradiated uranium creates fission tracks that can be viewed with a microscope. The fission-track radiography images indicate thin section sample areas with elevated uranium that are focus areas for SEM-EDS work. EDS spectra provide quantitative elemental data that indicate the mineralogy of individual grains or grain coatings associated with the fission-track identification of elevated uranium. For the site in this study, the results indicated that uranium occurred (1) with coatings of aluminum–silicon (Al/Si) gel and gypsum, (2) dispersed in the unsaturated zone associated with evaporite-type salts, and (3) sorbed onto organic carbon. The Al/Si gel likely formed when low-pH waters were precipitated during calcite buffering, which in turn retained or precipitated trace amounts of Fe, As, U, V, Ca, and S. Understanding these mechanisms can help guide future laboratory and field-scale efforts in determining long-term uranium release rates to groundwater.


Sign in / Sign up

Export Citation Format

Share Document