Multi-scale assessment of winter wheat yield gaps with an integrated evaluation framework in the Huang-Huai-Hai farming region in China

2019 ◽  
Vol 157 (6) ◽  
pp. 523-536
Author(s):  
S. Li ◽  
J. Liu ◽  
M. Shang ◽  
H. Jia ◽  
Y. Feng ◽  
...  

AbstractQuantifying reasonable crop yield gaps and determining potential regions for yield improvement can facilitate regional plant structure adjustment and promote crop production. The current study attempted to evaluate the yield gap in a region at multi-scales through model simulation and farmer investigation. Taking the winter wheat yield gap in the Huang-Huai-Hai farming region (HFR) for the case study, 241 farmers’ fields in four typical high-yield demonstration areas were surveyed to determine the yield limitation index and attainable yield. In addition, the theoretical and realizable yield gap of winter wheat in 386 counties of the HFR was assessed. Results showed that the average field yield of the demonstration plots was 8282 kg/ha, accounting for 0.72 of the potential yield, which represented the highest production in the region. The HFR consists of seven sub-regions designated 2.1–2.7: the largest attainable yield gap existed in the 2.6 sub-region, in the southwest of the HFR, while the smallest was in the 2.2 sub-region, in the northwest of the HFR. With a high irrigated area rate, the yield gap in the 2.2 sub-region could hardly be reduced by increasing irrigation, while a lack of irrigation remained an important limiting factor for narrowing the yield gap in 2.3 sub-region, in the middle of the HFR. Therefore, a multi-scale yield gap evaluation framework integrated with typical field survey and crop model analysis could provide valuable information for narrowing the yield gap.

2019 ◽  
Vol 111 (2) ◽  
pp. 650-665 ◽  
Author(s):  
Brent R. Jaenisch ◽  
Amanda de Oliveira Silva ◽  
Erick DeWolf ◽  
Dorivar A. Ruiz-Diaz ◽  
Romulo P. Lollato

2018 ◽  
Vol 110 (1) ◽  
pp. 319-330 ◽  
Author(s):  
Shuang Sun ◽  
Xiaoguang Yang ◽  
Xiaomao Lin ◽  
Gretchen F. Sassenrath ◽  
Kenan Li

2002 ◽  
Vol 82 (2) ◽  
pp. 421-423
Author(s):  
H. G. Nass ◽  
G. A. Atlin ◽  
C. A. Caldwell ◽  
D. F. Walker

AC Grandview, a hard red winter wheat (Triticum aestivum L.), is adapted to the Maritimes. It has shown high yield, good winter survival and moderate to good resistance to powdery mildew, septoria leaf and glume blotch and snow mold. Key words: Triticum aestivum, red winter wheat, yield, cultivar description


2017 ◽  
Vol 87 ◽  
pp. 40-49 ◽  
Author(s):  
Joseph P. Lynch ◽  
Deirdre Doyle ◽  
Shauna McAuley ◽  
Fiona McHardy ◽  
Quentin Danneels ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Weiwei Liu ◽  
Weiwei Sun ◽  
Jingfeng Huang ◽  
Huayang Wen ◽  
Ran Huang

In the era of global climate change, extreme weather events frequently occur. Many kinds of agro-meteorological disasters that are closely related to environmental conditions (such as sunshine hours, temperature, precipitation, etc.) are witnessed all over the word. However, which factor dominates winter wheat production in the middle and lower reaches of the Yangtze River remains unresolved. Quantifying the key limiting meteorological factor could deepen our understanding of the impact of climate change on crops and then help us to formulate disaster prevention and mitigation measures. However, the relative role of precipitation, sunshine hours and maximum daily temperature in limiting winter wheat yield in the middle and lower reaches of the Yangtze River is not clear and difficult to decouple. In this study, we used statistical methods to quantify the effect of precipitation, maximum temperature and sunshine hours extremes on winter wheat (Triticum aestivum L.) yield based on long time-series, county-level yield data and a daily meteorological dataset. According to the winter wheat growing season period (October of the sowing year to May of the following year), anomaly values of cumulative precipitation, average sunshine hours and average daily maximum temperature are calculated. With the range of −3 σ to 3 σ of anomaly and an interval of 0.5 σ (σ is the corresponding standard deviation of cumulative precipitation, mean maximum temperature and mean sunshine hours, respectively), the corresponding weighted yield loss ratio (WYLR) represents the impact of this kind of climate condition on yield. The results show that excessive rainfall is the key limiting meteorological factor that can reduce winter wheat yield to −18.4% in the middle and lower reaches of the Yangtze River, while it is only −0.24% in extreme dry conditions. Moreover, yield loss under extreme temperature and sunshine hours are negligible (−0.66% for extremely long sunshine hours and −8.29% for extreme cold). More detailed analysis results show that the impact of excessive rainfall on winter wheat yield varies regionally, as it causes severe yield reductions in the Huai River basin and the middle to southern part with low elevation and rainy areas of the study area, while for drier areas in the Hubei province, there is even an increase in yield. Our results disclosed with observational evidence that excessive precipitation is the key meteorological limiting factor leading to the reduction in winter wheat yield in the middle and lower reaches of the Yangtze River. The knowledge of the possible impact of climate change on winter wheat yield in the study area allows policy-makers, agronomists and economists to better forecast a plan that differs from the past. In addition, our results emphasized the need for better understanding and further process-based model simulation of the excessive rainfall impact on crop yield.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Elżbieta Wójcik-Gront ◽  
Marzena Iwańska ◽  
Agnieszka Wnuk ◽  
Tadeusz Oleksiak

Among European countries, Poland has the largest gap in the grain yield of winter wheat, and thus the greatest potential to reduce this yield gap. This paper aims to recognize the main reasons for winter wheat yield variability and shed the light on possible reasons for this gap. We used long-term datasets (2008–2018) from individual commercial farms obtained by the Laboratory of Economics of Seed and Plant Breeding of Plant Breeding and Acclimatization Institute (IHAR)-National Research Institute (Poland) and the experimental fields with high, close to potential yield, in the Polish Post-Registration Variety Testing System in multi-environmental trials. We took into account environment, management and genetic variables. Environment was considered through soil class representing soil fertility. For the crop management, the rates of mineral fertilization, the use of pesticides and the type of pre-crop were considered. Genotype was represented by the independent variable year of cultivar registration or year of starting its cultivation in Poland. The analysis was performed using the CART (Classification and Regression Trees). The winter wheat yield variability was mostly dependent on the amount of nitrogen fertilization applied, soil quality, and type of pre-crop. Genetic variable was also important, which means that plant breeding has successfully increased genetic yield potential especially during the last several years. In general, changes to management practices are needed to lower the variability of winter wheat yield and possibly to close the yield gap in Poland.


Sign in / Sign up

Export Citation Format

Share Document