Carbon stocks and the use of shade trees in different coffee growing systems in the Peruvian Amazon

Author(s):  
R. Solis ◽  
G. Vallejos-Torres ◽  
L. Arévalo ◽  
J. Marín-Díaz ◽  
M. Ñique-Alvarez ◽  
...  

Abstract Agroforestry systems can play an important role in mitigating the effects of climate change given their capacity to increase tree diversity and to store more carbon than conventional farming. This study aims at assessing carbon stocks and the use of shade trees in different coffee growing systems in the Northeast Peruvian Amazon. Carbon stocks in trees were estimated by field-based measurements and allometric equations. Carbon stocks in dead wood, litter and soil (upper 60 cm) were determined using field sampling and laboratory analysis. The diversity analysis drew on the Shannon–Weiner diversity index, and focus groups were used to obtain information about the local use of shade trees. The total carbon stock in the polyculture-shaded coffee system was 189 t C/ha, while the Inga-shaded and unshaded systems totalled 146 and 113 t C/ha, respectively. The soil compartment contributed the largest carbon stock in the coffee growing systems and contained 67, 82 and 96% of the total carbon stock in the polyculture-shaded, Inga-shaded and unshaded coffee systems, respectively. The Shannon–Weiner index and tree species richness values were highest for the polyculture-shaded coffee system, with a total of 18 tree species identified as important sources of fodder, food, wood, firewood and medicine. Therefore, coffee agroforestry systems play a significant role in carbon storage, while promoting conservation of useful trees in agricultural landscapes in the Peruvian Amazon.

Author(s):  
Bayu Elwanto Bagus Dewanto ◽  
Retnadi Heru Jatmiko

Estimation of aboveground carbon stock on stands vegetation, especially in green open space, has become an urgent issue in the effort to calculate, monitor, manage, and evaluate carbon stocks, especially in a massive urban area such as Samarinda City, Kalimantan Timur Province, Indonesia. The use of Sentinel-1 imagery was maximised to accommodate the weaknesses in its optical imagery, and combined with its ability to produce cloud-free imagery and minimal atmospheric influence. The study aims to test the accuracy of the estimated model of above-ground carbon stocks, to ascertain the total carbon stock, and to map the spatial distribution of carbon stocks on stands vegetation in Samarinda City. The methods used included empirical modelling of carbon stocks and statistical analysis comparing backscatter values and actual carbon stocks in the field using VV and VH polarisation. Model accuracy tests were performed using the standard error of estimate in independent accuracy test samples. The results show that Samarinda Utara subdistrict had the highest carbon stock of 3,765,255.9 tons in the VH exponential model. Total carbon stocks in the exponential VH models were 6,489,478.1 tons, with the highest maximum accuracy of 87.6 %, and an estimated error of 0.57 tons/pixel.


2014 ◽  
Vol 5 ◽  
pp. 63-67
Author(s):  
Tshering Dolma Lama ◽  
Ram Asheshwar Mandal

A study was carried on ten leasehold forests of Katakuti VDC, Dolakha district to estimate the carbon stock. Random sampling was used to collect the biophysical data of trees/ poles, sapling, root and leaf litter, herb and grass. Then, the biomass was calculated using the respective equation and the calculated biomass stock was converted into carbon stock multiplying with 0.47. Similarly, the soil samples were collectewd from different depths of 0-10 cm, 10-20 cm and 20-30 cm to determine the soil organic carbon. Lastly, all analyzed data were compiled to get total carbon stocks. The result showed that the estimated total carbon stock per ha was found to be highest in Srijana leasehold forest with 125.493 t C/ha. The estimated total carbon stock of 10 leasehold forest was found to be 1439.033 tons. Here, Leasehold forests have been an emerging and successful example in conserving forests in epal. So, it is recommended to extend such studies in other parts of Nepal. DOI: http://dx.doi.org/10.3126/init.v5i0.10255   The Initiation 2013 Vol.5; 63-67


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
P. Ghimire

Despite the significant contribution of forests in climate change mitigation, studies to establish the potential of sub-tropical forest ecosystems at different aspects in enhancing soil health indicators are only partly known. The study was carried out to quantify vegetation and soil carbon stocks of a natural Chir Pine (Pinus roxburghii) forest at two different aspects (northern and southern) of a typical sub-tropical environment in Nepal. Stratified random sampling was used for forest inventory and soil sample collection. Aboveground forest biomass was calculated using standard allometric models. Soil was sampled up to 60 cm depth and at 20 cm intervals. Walkey and Black method was used to determine soil organic carbon. Total aboveground plant biomass carbon in southern aspect (140.20 t ha-1) was higher compared to that on the northern aspect (115.34 t ha-1). Similarly, soil carbon stock on southern aspect (46.65 t ha-1) was higher than that of northern aspect (42.14 t ha-1). This resulted to total carbon stock on southern and northern aspect of P. roxburghii forest of 186.85 t ha-1 and 157.48 t ha-1 respectively. The total carbon stock of P. roxburghii forest is significantly higher on southern aspect than on northern aspect with p value 0.001 (p<0.05). Hence, we conclude that the southern aspect of the Mahabharat range favour the growth of P. roxburghii forest compared to the northern aspect. However, the contribution of the entire Chir pine forest ecosystem to carbon sequestration and global climate warming mitigation can’t be neglected.


FLORESTA ◽  
2014 ◽  
Vol 44 (2) ◽  
pp. 185 ◽  
Author(s):  
Carlos Roberto Sanquetta ◽  
Ana Paula Dalla Corte ◽  
Caciane Pinto ◽  
Luiz Antônio Nunes Melo

This study was carried out in 2004 in Iguacu National Park (INP), Paraná-Brazil. The vegetation is composed of Araucaria Forest (AF) (13.1%) and Seasonal Semi-deciduous Forest (FES) (86.9%). Two types of materials were analyzed: litter (L) and woody material (W) (alive (A) and dead (D)), and classified by diameter: W1(0–0.70 cm), W2(0.71–2.5 cm), W3(2.51–7.50 cm), and W4(³7.5 cm). The results for the FES was 21.7 t/ha, with 42.4% in diameter class WD4 (8.98 t/ha) and 38.6% was litter (8.17 t/ha). The FOM was 12.87 t/ha, with 78.9% litter. The carbon stocks of the materials varied between 36.2% and 42.1% (for litter and WD4), both in the FES. There were no significant differences between the carbon stocks of the forest types. Rather differences existed between the pools (5% ANOVA and Tukey test). In the FES the carbon stock was 8.29 t/ha, which is equivalent to 30.41 tCO2e/ha, and in the FOM the stock was 4.94t/ha or 18.12 tCO2e/ha. For the vegetation types the carbon stock in INP was 8.35 tC/ha and 30.62 tCO2e/ha for the FES and FOM, respectively. The carbon pools analyzed in this study contribute significantly to the total carbon stock of a forest ecosystem and should always be taken into consideration when developing estimates for a forest.Keywords:  Araucaria; Seasonal Semideciduous Forest; Araucaria Forest; climate change; carbon fraction. ResumoBiomassa e carbono na vegetação não arbórea, madeira morta e serapilheira no Parque Nacional do Iguaçu. O trabalho ocorreu em 2004 no Parque Nacional do Iguaçu (PNI), Paraná. O PNI tem Floresta Ombrófila Mista (FOM) (13,1%) e Floresta Estacional Semidecidual (FES) (86,9%). Foram analisados L – serapilheira e W – materiais lenhosos (vivos – A e mortos – D), classificados pelos diâmetros: W1 (0 a 0,70 cm), W2 (0,71 a 2,5 cm), W3 (2,51 a 7,50 cm) e W4 (³7,51 cm). Os resultados da FES mostram 21,7 t.ha-1, sendo 42,4% do WD4 (8,98 t.ha-1) e 38,6% da serapilheira (8,17 t.ha-1). Na FOM, foram 12,87 t.ha-1 (78,9%) da serapilheira. Os teores de carbono dos materiais variaram de 36,2 a 42,1% (para serapilheira e WD4), ambos na FES. Não houve diferenças significativas nos teores de carbono, havendo diferença nos compartimentos (5% ANOVA) e teste de Tukey. Na FES, o estoque de carbono foi 8,29 t.ha-1, correspondendo a 30,41 tCO2e.ha-1, e na FOM de 4,94 tC.ha-1 e 18,12 tCO2e.ha-1. Para as fitofisionomias, o estoque de C no INP foi de 8,35 tC.ha-1 e 30,62 tCO2e.ha-1. Os reservatórios de C analisados no estudo apresentam participação importante no estoque total de C do ecossistema florestal, devendo sempre serem considerados quando do desenvolvimento de estimativas para a floresta.Palavras-chave:  Araucária; Floresta Estacional Semidecidual; Floresta Ombrófila Mista; mudanças climáticas; teor de carbono.


2015 ◽  
Vol 10 (3) ◽  
pp. 1011-1016
Author(s):  
Manoj Behera ◽  
Nilima Priyadarshini

The rate of biomass accumulation and carbon stocks of 13 different clones of Teak in Odisha were studied to identify the promising genotypes suitable for massive clonal plantations in Odisha. ORANP2 produced highest biomass among the 13 clones of teak i.e. 223.72m3/ha, while ORANP1 registered lowest value of 64.05m3/ha in regards to biomass accumulation. The total carbon stock values were found in the range of 32.02-111.86t/ha for 13 different clones of teak. The Mean Annual Increment (MAI) value for total tree biomass lies between 1.91t/ha to 4.76t/ha in different clones of teak studied. Similarly the total CO2 content was evinced to be varied from 128.77 to 440.21t/ha among the clones studied. The Current Annual Increment (CAI) values for total carbon stock and carbon content varied from 0.95-2.38t/ha and 3.50-8.73t/ha with the net annual carbon storage was found to be within 2.91-8.16t/ha. ORANP2 was found to be superior one in terms of net biomass and carbon content. It was ascertained that selection of suitable teak clone is highly required to meet both economic and environmental obligations.


Author(s):  
Stella Nwawulu Chiemela ◽  
Florent Noulèkoun ◽  
Chinedum Jachinma Chiemela ◽  
Amanuel Zenebe ◽  
Nigussie Abadi ◽  
...  

Purpose This paper aims at providing the evidence about how carbon sequestration in terrestrial ecosystems could contribute to the decrease of atmospheric CO2 rates through the adoption of appropriate cropping systems such as agroforestry. Design/methodology/approach Stratified randomly selected plots were used to collect data on tree diameter at breast height (DBH). Composite soil samples were collected from three soil depths for soil carbon analysis. Above ground biomass estimation was made using an allometric equation. The spectral signature of each plot was extracted to study the statistical relationship between carbon stock and selected vegetation indices. Findings There was a significant difference in vegetation and soil carbon stocks among the different land use/land cover types (P < 0.05). The potential carbon stock was highest in the vegetation found in sparsely cultivated land (13.13 ± 1.84 tons ha−1) and in soil in bushland (19.21 ± 3.79 tons ha−1). Carbon sequestration potential of the study area significantly increased (+127174.5 tons CO2e) as a result of conversion of intensively cultivated agricultural lands to agroforestry systems. The amount of sequestered carbon was found to be dependent on species diversity, tree density and tree size. The vegetation indices had a better correlation with soil and total carbon. Originality/value The paper has addressed an important aspect in curbing greenhouse gases in integrated land systems. The paper brings a new empirical insight of carbon sequestration potentials of agroforestry systems with a focus on drylands.


2019 ◽  
Vol 7 (1) ◽  
pp. 124-129
Author(s):  
Ratna Silwal Gautam

Carbon sequestration is one of the main ecosystem services in today’s condition. Estimation of above ground tree biomass and carbon stock is important as it gives ecological and economic benefits to the local people. This study was conducted in the Hasantar Community Forest (HCF) of Nagarjun Municipality, Kathmandu. Concentric circular plots of 12.62m radius were established in five different blocks of HCF for the study of tree species. The main objective of this study was to find out the Important Value Index (IVI), Above Ground Tree Biomass (AGTB) and carbon stocks tree species of HCF. This forest comprises the tree species of families like fagacaeae, moraceae, myrtaceae, fabaceae etc in dominant numbers. Schima wallichii was found ecologically most significant tree species as it possess highest IVI value. The carbon stock of this plant was found as   206.865 t/ha which comprises 27 % of total carbon in HCF. The total above ground tree carbon stock of HCF (55.4 ha.) was found 144.795 t/ha. Int. J. Appl. Sci. Biotechnol. Vol 7(1): 124-129


2014 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
Supriadi Supriadi ◽  
Richardus F Kaswadji ◽  
Dietrich G Bengen ◽  
Malikusworo Hutomo

Konsep blue carbon yang diperkenalkan oleh UNEP, FAO dan UNESCO pada tahun 2009 memasukkan padang lamun sebagai salah satu ekosistem yang mempunyai peran dalam penyerapan karbon global. Karbon yang diserap disimpan dan dialirkan dalam beberapa kompartemen, antara lain di sedimen, herbivora, kolom air, ekosistem lain dan dalam bentuk biomassa. Penelitian dilakukan di Pulau Barranglompo, Makassar, untuk melihat potensi stok karbon yang tersimpan dalam biomassa lamun. Kepadatan lamun diukur dengan melakukan sampling menggunakan metode transek kuadrat dengan ukuran 50cm x 50cm. Sedangkan untuk biomassa dilakukan dengan transek 20cm x 20cm. Hubungan antara kepadatan, biomassa dan kandungan karbon dari lamun digunakan untuk menentukan jumlah stok karbon. Kepadatan lamun disurvei pada 236 titik, sedangkan untuk pengambilan sampel biomassa dilakukan pada 30 titik. Hasil penelitian menunjukkan bahwa komunitas lamun mempunyai total stok karbon sebesar 73,86 ton dari total luas padang lamun 64,3 ha. Karbon di bawah substrat sebesar 56,55 ton (76,3%), lebih tinggi dibanding karbon di atas substrat yang hanya 17,57 ton (23,7%). Jenis lamun Enhalus acoroides menyumbang lebih dari 70% terhadap total stok karbon. Berdasarkan kelas karbon, kontribusi terbesar ditemukan pada kelas 100-200 gC.m-2 sebesar 29,41 ton (39,7%). Hasil ini menunjukkan bahwa ekosistem lamun berperan sangat penting dalam menjaga stok karbon di laut sehingga perlu mendapatkan perhatian untuk konservasinya. Kata kunci: konsep blue karbon, lamun, Barranglompo   Blue carbon concept as introduced by UNEP, FAO and UNESCO in 2009 included seagrass beds as one ecosystem having a significant role in global carbon absorption. Absorbed carbon was stored and distributed in various compartments such as in sediments, herbivores, water column, other ecosystems and in form of biomass. The research was conducted in Barranglompo Island, Makassar City to analyze the potency of carbon stock that stored within seagrass biomass. Seagrass density was sampled using quadrat transect method with size of 50cm x 50cm. While for biomass was done by harvesting seagrass at transect of 20cm x 20cm in root penetration depth. Relationship between density, biomass and carbon content of seagrass were used to determine total carbon stock. Seagrass density was surveyed at 236 points, while for biomass sampling was conducted in 30 points. The results showed that seagrass community had total carbon stocks as much as 73.86 tonnes from overall 64.3 ha of seagrass bed areas.  Below ground carbon had 56.55 tonnes (76.3%), higher compared to that aboveground which only 17.57 tonnes (23.7%). Seagrass species Enhalus acoroides contributed more than 70% to the total carbon stocks, whereas, based on the carbon classes, the highest contribution was found at class 100-200 gC.m-2 i.e. 29.41 tonnes (39.7%). These results suggest that seagrass ecosystem plays an important role in maintaining the carbon stock in the ocean and should receive good attention for its conservation. Keywords: blue carbon concept, seagrass, Barranglompo


2018 ◽  
Vol 9 (3) ◽  
pp. 167-174
Author(s):  
Dian Ariyanti ◽  
Nurheni Wijayanto ◽  
Iwan Hilwan

Vegetation is one factor that can decrease carbon accumulation in the atmosphere. The diversity of plant species in each land use has different abilities to absorb carbon in the atmosphere. This research was conducted in Pesisir Barat Regency of Lampung Province on 4 (four) types of land use, namely: (1) natural forest in Balai Kencana Resort, Bukit Barisan National Park (2) oil palm plantation in Pekon Marang, (3) coffee plantation in Pekon Suka Mulya, and (4) agroforestry of repong damar in Pekon Pahmungan. This reserach aims to analyze the diversity of plant species and to calculate the potential of plant carbon stock and carbon sequestration (above ground biomass) using alometric equations in various types of land use in Pesisir Barat Regency. The research method was vegetation analysis to learn about the diversity of plant species and calculation of carbon stock using alometric equations. The results showed that the composition of plant species in Bukit Barisan NP found 83 plant species belonging to 37 families, in the palm plantation found 9 plant species belonging to 8 families, in the coffee garden found 17 plant species belonging to 11 families, and in agroforestry of repong damar found 73 plant species belonging to 33 families. The total carbon stock potential was 376.16 ton/ha and carbon sequestrated. 1 257.20 ton/ha with the highest carbon uptake available at repong damar agroforestry site of 901.11 ton/ha.Keywords: aboveground biomass, carbon, diversity, pesisir barat regency


Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


Sign in / Sign up

Export Citation Format

Share Document