Effects of long-term fertilizer phosphorus application on soil and crop phosphorus and cadmium contents

1998 ◽  
Vol 131 (2) ◽  
pp. 187-195 ◽  
Author(s):  
I. R. RICHARDS ◽  
C. J. CLAYTON ◽  
A. J. K. REEVE

The effects of four rates of fertilizer phosphorus (P) application (0, 9·8, 19·6 and 39·2 kg P/ha per year) on soil and crop P and cadmium (Cd) contents were measured in a field trial begun in 1968 and cropped each year with barley in south west England. In 1996, available and total soil P and Cd were measured in seven soil layers (0–20, 20–25, 25–30, 30–35, 35–40, 40–45 and 45–50 cm). Offtake of P in the crop was measured, or could be estimated, throughout the trial period. There was a linear relationship between P balance (total applied − total offtake) and P application rate with a balance of zero at a rate equivalent to 17 kg P/ha per year. The rate of P required for the economically optimum grain output was equivalent to 30 kg P/ha per year. No evidence was found for available P enrichment of soil layers below 25 cm. There was no evidence of Cd enrichment of either soil or crop after 29 years of P applications.

2010 ◽  
Vol 113-116 ◽  
pp. 155-160
Author(s):  
Quan Lai Zhou ◽  
Mu Qiu Zhao ◽  
Cai Yan Lu ◽  
Yi Shi ◽  
Xin Chen

This study investigated the effects of different rates of phosphorus application on vertical transference of P. An aquatic brown paddy soil was filled in organic glass columns using for the leaching experiments. The results indicated that significant vertical transference was found using change of Olsen-P and CaCl2-P. The transference distance was no more than 10cm when P application rate between 200 and 800 kg P ha-1, and was more than 10cm as P application rate above 800 kg P ha-1. We obtained the threshold value of Olsen-P was 53.7 mg kg-1 by split-line model, and calculated that the threshold value of P fertilizer application rate was 382.1 kg P ha-1 by relationship of soil Olsen-P concentration and P application rate. The soil P transference increased, if P application rate was above 382.1 kg P ha-1. It would be helpful for controlling the P fertilizer amount by field to decrease P loss.


HortScience ◽  
2019 ◽  
Vol 54 (7) ◽  
pp. 1237-1242 ◽  
Author(s):  
Michael F. Polozola ◽  
Daniel E. Wells ◽  
J. Raymond Kessler ◽  
Wheeler G. Foshee ◽  
Amy N. Wright ◽  
...  

An experiment was conducted to determine the effects of banded phosphorus (P) applications at differing rates in irrigated and nonirrigated pecan (Carya illinoinensis) plots on P movement within the soil, P uptake and movement within pecan trees, and the yield and quality of nuts. On 20 Mar. 2015, P applications of 0 kg·ha−1 (0×), 19.6 kg·ha−1 (1×), 39.2 kg·ha−1 (2×), and 78.5 kg·ha−1 (4×) were administered to bands of triple superphosphate to randomly selected trees in nonirrigated and irrigated plots of a ‘Desirable’ orchard bordered by ‘Elliot’ trees. When P was applied at the 2× and 4× rates, the total soil test P decreased linearly by 35% and 54%, respectively, in nonirrigated plots and by 41% and 59%, respectively, in irrigated plots over the course of the experiment. There was no change in soil test P over time at the 0× rate for either irrigation regimen; however, at the 1× rate, soil test P decreased 44% in the irrigated plot but did not change in the nonirrigated plot. The largest linear decrease of the soil test P from the start of the experiment to the end of the experiment occurred in the top 0 to 7.6 cm. In contrast, soil test P at a depth of 15.2 to 22.9 cm decreased linearly by 23% in the nonirrigated plot, but it did not decrease over time in the irrigated plot. Increasing the P application rate increased foliar P quadratically in the nonirrigated plot, but only the 4× application rate increased foliar P compared with the 0× control. In the irrigated plot, foliar P concentrations decreased linearly from 2015 to 2017, and foliar P concentrations were not influenced by the P application rate. No differences in pecan yield or quality were observed in either irrigated or nonirrigated plots. Overall, P banding may not be the most sustainable way to increase foliar concentrations of P quickly or to maintain concentrations of the nutrient in the long term.


2008 ◽  
Vol 15 (4) ◽  
pp. 423 ◽  
Author(s):  
I. SAARELA ◽  
H. HUHTA ◽  
P. VIRKAJÄRVI

In order to update fertilisation recommendations for Finnish silty and sandy soils, the effects of repeated phosphorus (P) fertilisation on the yields of cereals, grasses and other crops were measured at ten sites for 9 to 18 years. Results of some earlier studies were also used in examining the relationships of the yield responses to applied P and to the soil test values measured by the Finnish ammonium acetate method (PAc). Significant effects of P fertilisation were observed at all sites that had low or medium PAc values; in the case of potatoes, even at sites with fairly high values. The mean relative yield without applied P divided by yield with 60 or 45 kg P ha-1 of the ten sites was 81% (mean PAc 11.6 mg dm-3) varying from 55% at the PAc value of 4.7 mg dm-3 to 100% at the highest PAc values. In order to achieve a relative yield of 97%, which is considered the optimum for cereals and leys, the required mean annual application of P in the later parts of the experiments was 25 kg ha-1 (variation 0-42 kg ha-1). On the six soils that had low or medium PAc values (4.5-9.1 mg dm-3, mean 8.0 mg dm-3), relative yield was 97% at the P application rate of 35 kg ha-1 (variation 22-42 kg ha-1), while 11 kg P ha-1 (variation 0-25 kg ha-1) sufficed on the four soils that had higher PAc values (mean 20.8 mg dm-3, variation 11.7-35.2 mg dm-3). Reasons for the poor availability of P in silty and sandy soils were discussed.;


2019 ◽  
Vol 11 (17) ◽  
pp. 4799
Author(s):  
Wenting Jiang ◽  
Xiaohu Liu ◽  
Xiukang Wang ◽  
Lihui Yang ◽  
Yuan Yin

Optimizing the phosphorus (P) application rate can increase grain yield while reducing both cost and environmental impact. However, optimal P rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. The present study used field experiment conducted at 36 experiments sites for maize to determine the impact of P application levels on grain yield, plant P uptake, and P agronomy efficiency (AEP), P-derived yield benefits and private profitability, and to evaluated the agronomically (AOPR), privately (POPR), and economically (EOPR) optimal P rate at a regional scale. Four treatments were compared: No P fertilizer (P0); P rate of 45–60 kg ha−1 (LP); P rate of 90–120 kg ha−1 (MP); P rate of 135–180 kg ha−1 (HP). P application more effectively increased grain yield, reaching a peak at MP treatment. The plant P uptake in HP treatment was 37.4% higher than that in P0. The relationship between P uptake by plants (y) and P application rate (x) can be described by the equation y = −0.0003x2 + 0.1266x + 31.1 (R2 = 0.309, p < 0.01). Furthermore, grain yield (y) and plant P uptake (x) across all treatments also showed a significant polynomial function (R2 = 0.787–0.846). The MP treatment led to highest improvements in P agronomic efficiency (AEP), P-derived yield benefits (BY) and private profitability (BP) compared with those in other treatments. In addition, the average agronomically (AOPR), privately (POPR), and economically optimal P rate (EOPR) in 36 experimental sites were suggested as 127.9 kg ha−1, 110.8 kg ha−1, and 114.4 kg ha−1, which ranged from 80.6 to 211.3 kg ha−1, 78.2 to 181.8 kg ha−1, and 82.6 to 151.6 kg ha−1, respectively. Economically optimal P application (EOPR) can be recommended, because EOPR significantly reduced P application compared with AOPR, and average economically optimal yield was slightly higher compared with the average yield in the MP treatment. This study was conducive in providing a more productive, use-effective, profitable, environment-friendly P fertilizer management strategy for supporting maximized production potential and environment sustainable development.


1994 ◽  
Vol 34 (2) ◽  
pp. 173
Author(s):  
KA Shaw ◽  
MA Gilbert ◽  
JD Armour ◽  
MJ Dwyer

A field experiment was established to define the phosphorus (P) requirement for establishment and maintenance of a mixed legume pasture (Stylosanthes scabra cv. Seca, S. hamata cv. Verano, S. guianensis cv. Graham, Macroptilium atropurpureum cv. Siratro) introduced into a native grass pasture on an infertile duplex red earth. Rates of 0, 5, 10, 20, and 40 kg P/ha were applied to separate plots in year 1 (1982), 2, and 3. In year 5 (1986 growing season), half of each plot that had received 20 and 40 kg P/ha in year 3 was refertilised at the original rate to ensure that maximum yields were defined. Bicarbonate- or acid-extractable soil P concentrations of 8 mg/kg were sufficient for 80% maximum legume yield. The residual value of applied P in the surface soil, as measured by soil analysis, decreased exponentially, but an initial application of 40 kg P/ha was still sufficient to produce near-maximum legume yield after 5 years. Phosphorus application increased the dry matter yield of legume. During the establishment phase (years 1 and 2 after planting) yields reached maximum at 10 and 20 kg P/ha, respectively, but increased linearly in subsequent years. When the original rates were reapplied in year 5, peak yield occurred at 20 + 20 kg P/ha, and there was no difference between this yield and that from plots receiving 40 kg P/ha in year 1. Native grass yields increased with P application only in years 4 and 5 of the experiment. Stylos demonstrated good tolerance to low P supply. In year 1, 80% of the total legume yield consisted of Graham stylo and Siratro, whereas in subsequent years, Seca and Verano made up 70 and 20%, respectively, of the total, irrespective of treatment. Yield of legume at nil P, relative to maximum, increased from 5% in year 1 to 42% in year 5.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1716
Author(s):  
Wei Zhang ◽  
Chunqin Zou ◽  
Xiuxiu Chen ◽  
Yumin Liu ◽  
Dunyi Liu ◽  
...  

Copper (Cu) and iron (Fe) are essential micronutrients for plants and animals. How phosphorus (P) application affects Cu and Fe concentrations in maize grain still remains unclear. Two-year field studies were conducted in a long-term experiment with six P levels (0, 12.5, 25, 50, 100, and 200 kg∙ha−1 P) on calcareous soil. Phosphorus application significantly decreased the average grain Cu concentration by 12.6% compared to no P treatment, but had no effect on grain Fe concentration. The copper content increased as the P application rate increased from 0 to 25 or 50 kg·ha−1, but then decreased, while Fe content kept increasing. As the P application rate increased, the specific Cu uptake by the roots decreased, but not for Fe. The root length density in response to P application had a positive relationship with shoot Cu and Fe content. The shoot Cu content and grain Cu concentration decreased with the reduction in the arbuscular mycorrhizal fungi (AMF) colonization of roots due to increasing P application. The reduction in grain Cu concentration with increasing P rates could be partly explained by the decreasing uptake efficiency.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjia Yu ◽  
Haigang Li ◽  
Peteh Mehdi Nkebiwe ◽  
Guohua Li ◽  
Torsten Müller ◽  
...  

Modern phosphate (P) fertilizers are sourced from P rock reserves, a finite and dwindling resource. Globally, China is the largest producer and consumer of P fertilizer and will deplete its domestic reserves within 80 years. It is necessary to avoid excess P input in agriculture through estimating P demand. We used the legacy P assessment model (LePA) to estimate P demand based on soil P management at the county, regional, and country scales according to six P application rate scenarios: (1) rate in 2012 maintained; (2) current rate maintained in low-P counties and P input stopped in high-P counties until critical Olsen-P level (CP) is reached, after which rate equals P-removal; (3) rate decreased to 1–1.5 kg ha−1 year−1 in low-P counties after CP is reached and in high-P counties; (4) rate in each county decreased to 1–8 kg ha−1 year−1 after soil Olsen-P reached CP in low P counties; (5) rate in each county was kept at P-removal rate after reduction; (6) P input was kept at the rate lower than P-offtake rate after reduction. The results showed that the total P fertilizer demand of China was 750 MT P2O5, 54% of P fertilizer can be saved from 2013 to 2080 in China, and soil Olsen-P of all counties can satisfy the demand for high crop yields. The greatest potential to decrease P input was in Yangtze Plain and South China, which reached 60%. Our results provide a firm basis to analyze the depletion of P reserves in other countries.


2018 ◽  
Vol 102 (4) ◽  
pp. 11-13
Author(s):  
Florencia Sucunza ◽  
Flavio Gutiérrez Boem ◽  
Fernando García ◽  
Miguel Boxler ◽  
Gerardo Rubio

Data from long-term crop rotation study sites were combined to evaluate the effect of long-term application (and omission) of P fertilizers. The impact of maintaining either a negative or positive P balances on soil test P at five distinct sites was described by single response functions despite a range of differences in soil properties.


1988 ◽  
Vol 68 (2) ◽  
pp. 345-358 ◽  
Author(s):  
J. P. SINGH ◽  
R. E. KARAMANOS ◽  
J. W. B. STEWART

The nature of the P-induced Zn deficiency in bean plants was studied in a growth chamber experiment using three pedogenically different soils. Application of P (0, 40, 80 and 160 mg P kg−1 soil) resulted in significant dry matter (DM) yield increases. Maximum DM yields were attained at the 40 mg P kg−1 application rate. Application of Zn (0, 5 or 10 mg Zn kg−1 soil) without P application had no effect on DM yields of bean plants. However, Zn application in combination with P application resulted in significant DM yield responses. There was no evidence that the P-induced Zn deficiency was a result of differences in soil characteristics or influence of P on the water soluble plus exchangeable, organically bound, Mn- and Fe-oxide bound or residual Zn fractions. The Zn concentration in bean plant tops was significantly reduced due to P application and the magnitude of the reduction was greatest with the first increment of applied P (40 mg P kg−1 soil). Application of P induced Zn deficiency, at least partly, by stimulation of growth and subsequent dilution of tissue Zn concentration. Translocation of Zn from roots to tops appeared to be restricted at 80 and 160 mg applied P kg−1 soil treatments, as evidenced by the reduction of Zn uptake in non-Zn treatments. Thus, plant dilution effects and reduced translocation of Zn from roots to tops were the two mechanisms responsible for the observed P-induced Zn deficiency in this study. Key words: P × Zn interaction, plant availability, plant uptake, soil Zn fractions, soil P, Zinc-65


Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 117 ◽  
Author(s):  
Musibau O. Azeez ◽  
Gitte Holton Rubæk ◽  
Ingeborg Frøsig Pedersen ◽  
Bent T. Christensen

Soil phosphorus (P) reserves, built up over decades of intensive agriculture, may account for most of the crop P uptake, provided adequate supply of other plant nutrients. Whether crops grown on soils with reduced supply of other nutrients obtain similar use-efficiency of soil P reserves remains unclear. In treatments of the Askov Long-Term Experiment (initiated in 1894 on light sandy loam), we quantified changes in soil total P and in plant-available P (Olsen P, water extractable P and P offtake in wheat grains) when P-depleted soil started receiving P in rock phosphate and when P application to soil with moderate P levels ceased during 1997–2017. Additionally we studied treatments with soil kept unfertilised for &gt;100 years and with soil first being P depleted and then exposed to surplus dressings of P, nitrogen (N) and potassium in cattle manure. For soil kept unfertilised for &gt;100 years, average grain P offtake was 6 kg ha–1 and Olsen P averaged 4.6 mg kg–1, representing the lower asymptotic level of plant-available P. Adding igneous rock phosphate to severely P-depleted soil with no N fertilisation had little effect on Olsen P, water extractable P (Pw), grain yields and P offtake. For soils with moderate levels of available P, withholding P application for 20 years reduced contents of Olsen P by 56% (from 16 to 7 mg P kg–1) and of Pw by 63% (from 4.5 to 1.7 mg P kg–1). However, the level of plant-available P was still above that of unfertilised soil. Application of animal manure to P-depleted soil gradually raised soil P availability, grain yield and P offtake, but it took 20 years to restore levels of plant-available P. Our study suggests symmetry between rates of depletion and accumulation of plant-available P in soil.


Sign in / Sign up

Export Citation Format

Share Document