THE MECHANISM OF PHOSPHORUS-INDUCED ZINC DEFICIENCY IN BEAN (Phaseolus vulgaris L.)

1988 ◽  
Vol 68 (2) ◽  
pp. 345-358 ◽  
Author(s):  
J. P. SINGH ◽  
R. E. KARAMANOS ◽  
J. W. B. STEWART

The nature of the P-induced Zn deficiency in bean plants was studied in a growth chamber experiment using three pedogenically different soils. Application of P (0, 40, 80 and 160 mg P kg−1 soil) resulted in significant dry matter (DM) yield increases. Maximum DM yields were attained at the 40 mg P kg−1 application rate. Application of Zn (0, 5 or 10 mg Zn kg−1 soil) without P application had no effect on DM yields of bean plants. However, Zn application in combination with P application resulted in significant DM yield responses. There was no evidence that the P-induced Zn deficiency was a result of differences in soil characteristics or influence of P on the water soluble plus exchangeable, organically bound, Mn- and Fe-oxide bound or residual Zn fractions. The Zn concentration in bean plant tops was significantly reduced due to P application and the magnitude of the reduction was greatest with the first increment of applied P (40 mg P kg−1 soil). Application of P induced Zn deficiency, at least partly, by stimulation of growth and subsequent dilution of tissue Zn concentration. Translocation of Zn from roots to tops appeared to be restricted at 80 and 160 mg applied P kg−1 soil treatments, as evidenced by the reduction of Zn uptake in non-Zn treatments. Thus, plant dilution effects and reduced translocation of Zn from roots to tops were the two mechanisms responsible for the observed P-induced Zn deficiency in this study. Key words: P × Zn interaction, plant availability, plant uptake, soil Zn fractions, soil P, Zinc-65

2019 ◽  
Vol 70 (6) ◽  
pp. 499 ◽  
Author(s):  
Wang Shaoxia ◽  
Li Meng ◽  
Zhang Xiaoyuan ◽  
Fei Peiwen ◽  
Chen Yanlong ◽  
...  

Foliar zinc (ZnSO4) application is an effective agronomic tool for Zn biofortification of wheat (Triticum aestivum L.) and hence for overcoming human Zn deficiency. It is unclear how the methods used to apply phosphorus (P) fertilisers affect the uptake and availability of Zn in wheat plants. Here, a solution-culture experiment and a 2-year field experiment were conducted to determine the influence of P applied to leaves or roots on total, soluble and insoluble Zn in winter wheat plants (cv. Xiaoyan-22) also receiving foliar Zn. Foliar Zn application, regardless of P application, significantly improved grain total Zn (primarily water-soluble) by 79.4% under both growth conditions, and reduced grain phytic acid:Zn (PA:Zn) molar ratio by 54.4% in the field. In solution culture, root-applied P did not affect plant uptake of foliar-applied Zn; however, foliar application of Zn plus P reduced the soluble fraction of Zn in wheat tissues, and thus decreased grain Zn concentration by 13.2% compared with Zn-only foliar application. Similarly, in the field, foliar-applied Zn plus P resulted in lower grain total and soluble Zn concentration and higher grain PA and PA:Zn molar ratio than foliar Zn alone. Overall, foliar Zn application is efficient in increasing grain Zn concentration and bioavailability under varied methods of P application. Although foliar-applied P slightly reduces the ability of plants to use foliar-applied Zn to increase grain Zn, foliar Zn combined with commonly applied foliar P application represents an easily adoptable practice for farmers that will help to alleviate Zn deficiency in human populations.


2008 ◽  
Vol 15 (4) ◽  
pp. 423 ◽  
Author(s):  
I. SAARELA ◽  
H. HUHTA ◽  
P. VIRKAJÄRVI

In order to update fertilisation recommendations for Finnish silty and sandy soils, the effects of repeated phosphorus (P) fertilisation on the yields of cereals, grasses and other crops were measured at ten sites for 9 to 18 years. Results of some earlier studies were also used in examining the relationships of the yield responses to applied P and to the soil test values measured by the Finnish ammonium acetate method (PAc). Significant effects of P fertilisation were observed at all sites that had low or medium PAc values; in the case of potatoes, even at sites with fairly high values. The mean relative yield without applied P divided by yield with 60 or 45 kg P ha-1 of the ten sites was 81% (mean PAc 11.6 mg dm-3) varying from 55% at the PAc value of 4.7 mg dm-3 to 100% at the highest PAc values. In order to achieve a relative yield of 97%, which is considered the optimum for cereals and leys, the required mean annual application of P in the later parts of the experiments was 25 kg ha-1 (variation 0-42 kg ha-1). On the six soils that had low or medium PAc values (4.5-9.1 mg dm-3, mean 8.0 mg dm-3), relative yield was 97% at the P application rate of 35 kg ha-1 (variation 22-42 kg ha-1), while 11 kg P ha-1 (variation 0-25 kg ha-1) sufficed on the four soils that had higher PAc values (mean 20.8 mg dm-3, variation 11.7-35.2 mg dm-3). Reasons for the poor availability of P in silty and sandy soils were discussed.;


2017 ◽  
Vol 54 (3) ◽  
pp. 382-398 ◽  
Author(s):  
F.H.C. RUBIANES ◽  
B.P. MALLIKARJUNA SWAMY ◽  
S.E. JOHNSON-BEEBOUT

SUMMARYAs zinc (Zn) fertilizer and water management affect the expression of Zn-enriched grain traits in rice, we studied the effect of Zn fertilizer and water management on Zn uptake and grain yield of different biofortification breeding lines and the possible biases in selection for high grain Zn content. The first field experiment showed that longer duration genotypes had higher grain Zn uptake rate than shorter duration genotypes during grain filling. In the first greenhouse experiment, neither application of Zn fertilizer at mid-tillering nor application at flowering significantly increased the grain Zn concentration. In the second greenhouse experiment, application of alternate wetting and drying (AWD) significantly increased the available soil Zn and plant Zn uptake but not grain Zn concentration. Terminal drying (TD) did not increase the available soil Zn or grain Zn contents. The second field experiment confirmed that differences in TD were not important in understanding differences between genotypes. Zn application is not always necessary to breeding trials unless there is a severe Zn deficiency and there is no need to carefully regulate TD prior to harvest.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sen Wang ◽  
Zikang Guo ◽  
Li Wang ◽  
Yan Zhang ◽  
Fan Jiang ◽  
...  

An effective solution to global human zinc (Zn) deficiency is Zn biofortification of staple food crops, which has been hindered by the low available Zn in calcareous soils worldwide. Many culturable soil microbes have been reported to increase Zn availability in the laboratory, while the status of these microbes in fields and whether there are unculturable Zn-mobilizing microbes remain unexplored. Here, we use the culture-independent metagenomic sequencing to investigate the rhizosphere microbiome of three high-Zn (HZn) and three low-Zn (LZn) wheat cultivars in a field experiment with calcareous soils. The average grain Zn concentration of HZn was higher than the Zn biofortification target 40 mg kg–1, while that of LZn was lower than 40 mg kg–1. Metagenomic sequencing and analysis showed large microbiome difference between wheat rhizosphere and bulk soil but small difference between HZn and LZn. Most of the rhizosphere-enriched microbes in HZn and LZn were in common, including many of the previously reported soil Zn-mobilizing microbes. Notably, 30 of the 32 rhizosphere-enriched species exhibiting different abundances between HZn and LZn possess the functional genes involved in soil Zn mobilization, especially the synthesis and exudation of organic acids and siderophores. Most of the abundant potential Zn-mobilizing species were positively correlated with grain Zn concentration and formed a module with strong interspecies relations in the co-occurrence network of abundant rhizosphere-enriched microbes. The potential Zn-mobilizing species, especially Massilia and Pseudomonas, may contribute to the cultivars’ variation in grain Zn concentration, and they deserve further investigation in future studies on Zn biofortification.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjia Yu ◽  
Haigang Li ◽  
Peteh Mehdi Nkebiwe ◽  
Guohua Li ◽  
Torsten Müller ◽  
...  

Modern phosphate (P) fertilizers are sourced from P rock reserves, a finite and dwindling resource. Globally, China is the largest producer and consumer of P fertilizer and will deplete its domestic reserves within 80 years. It is necessary to avoid excess P input in agriculture through estimating P demand. We used the legacy P assessment model (LePA) to estimate P demand based on soil P management at the county, regional, and country scales according to six P application rate scenarios: (1) rate in 2012 maintained; (2) current rate maintained in low-P counties and P input stopped in high-P counties until critical Olsen-P level (CP) is reached, after which rate equals P-removal; (3) rate decreased to 1–1.5 kg ha−1 year−1 in low-P counties after CP is reached and in high-P counties; (4) rate in each county decreased to 1–8 kg ha−1 year−1 after soil Olsen-P reached CP in low P counties; (5) rate in each county was kept at P-removal rate after reduction; (6) P input was kept at the rate lower than P-offtake rate after reduction. The results showed that the total P fertilizer demand of China was 750 MT P2O5, 54% of P fertilizer can be saved from 2013 to 2080 in China, and soil Olsen-P of all counties can satisfy the demand for high crop yields. The greatest potential to decrease P input was in Yangtze Plain and South China, which reached 60%. Our results provide a firm basis to analyze the depletion of P reserves in other countries.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Muneta G. Manzeke-Kangara ◽  
Edward J. M. Joy ◽  
Florence Mtambanengwe ◽  
Prosper Chopera ◽  
Michael J. Watts ◽  
...  

Abstract Background Dietary zinc (Zn) deficiency is widespread in sub-Saharan Africa (SSA) with adverse impacts on human health. Agronomic biofortification with Zn fertilizers and improved soil fertility management, using mineral and organic nutrient resources, has previously been shown to increase Zn concentration of staple grain crops, including maize. Here, we show the potential of different soil fertility management options on maize crops to reduce dietary Zn deficiency in Zimbabwe using secondary data from a set of surveys and field experiments. Methods An ex-ante approach was used, informed by published evidence from studies in three contrasting smallholder production systems in Zimbabwe. To estimate current Zn deficiency in Zimbabwe, data on dietary Zn supply from non-maize sources from the Global Expanded Nutrient Supply (GENuS) data set were linked to maize grain Zn composition observed under typical current soil fertility management scenarios. Results A baseline dietary Zn deficiency prevalence of 68% was estimated from a reference maize grain Zn composition value of 16.6 mg kg−1 and an estimated dietary Zn intake of 9.3 mg capita−1 day−1 from all food sources. The potential health benefits of reducing Zn deficiency using different soil fertility management scenarios were quantified within a Disability Adjusted Life Years (DALYs) framework. A scenario using optimal mineral NPK fertilizers and locally available organic nutrient resources (i.e. cattle manure and woodland leaf litter), but without additional soil Zn fertilizer applications, is estimated to increase maize grain Zn concentration to 19.3 mg kg−1. This would reduce the estimated prevalence of dietary Zn deficiency to 55%, potentially saving 2238 DALYs year−1. Universal adoption of optimal fertilizers, to include soil Zn applications and locally available organic leaf litter, is estimated to increase maize grain Zn concentration to 32.4 mg kg−1 and reduce dietary Zn deficiency to 16.7%, potentially saving 9119 DALYs year−1. Potential monetized yield gains from adopting improved soil fertility management range from 49- to 158-fold larger than the potential reduction in DALYs, if the latter are monetized using standard methods. Conclusion Farmers should be incentivized to adopt improved soil fertility management to improve both crop yield and quality.


2020 ◽  
Vol 66 (No. 3) ◽  
pp. 113-118
Author(s):  
Angelica Rivera-Martin ◽  
Martin R Broadley ◽  
Maria J Poblaciones

Agronomic zinc (Zn) biofortification of crops could help to alleviate dietary Zn deficiency, which is likely to affect more than one billion people worldwide. To evaluate the efficiency of agronomic Zn biofortification of broccoli, four application treatments were tested: no Zn application (control); soil application of 5 mg/kg ZnSO<sub>4</sub>·7 H<sub>2</sub>O (soil); two sprays (15 mL/pot each) of 0.25% (w/v) ZnSO<sub>4</sub>·7 H<sub>2</sub>O (foliar); and soil + foliar combination. Soil Zn application increased Zn-DTPA (diethylenetriamine pentaacetic acid) concentration by 3.7-times but did not affect plant growth or plant Zn concentration. Foliar Zn application increased stem + leaves and floret Zn concentration by 78 and 23 mg Zn/kg, respectively, with good bioavailability based on phytic acid concentration. Boiling decreased mineral concentration by 19%, but increased bioavailability by decreasing the phytic acid concentration. The entire broccoli could constitute a good nutritional source for animals and humans. An intake of 100 g boiled florets treated with the foliar treatment will cover about 36% of recommended dietary intake (RDI) of Zn, together with 30% of Ca, 94% of K, 32% of Mg, 6% of Na, 55% of P, 60% of S, 10% of Cu, 22% of Fe, 43% of Mn, and 35% of Se RDIs.


1998 ◽  
Vol 131 (2) ◽  
pp. 187-195 ◽  
Author(s):  
I. R. RICHARDS ◽  
C. J. CLAYTON ◽  
A. J. K. REEVE

The effects of four rates of fertilizer phosphorus (P) application (0, 9·8, 19·6 and 39·2 kg P/ha per year) on soil and crop P and cadmium (Cd) contents were measured in a field trial begun in 1968 and cropped each year with barley in south west England. In 1996, available and total soil P and Cd were measured in seven soil layers (0–20, 20–25, 25–30, 30–35, 35–40, 40–45 and 45–50 cm). Offtake of P in the crop was measured, or could be estimated, throughout the trial period. There was a linear relationship between P balance (total applied − total offtake) and P application rate with a balance of zero at a rate equivalent to 17 kg P/ha per year. The rate of P required for the economically optimum grain output was equivalent to 30 kg P/ha per year. No evidence was found for available P enrichment of soil layers below 25 cm. There was no evidence of Cd enrichment of either soil or crop after 29 years of P applications.


Soil Research ◽  
2005 ◽  
Vol 43 (2) ◽  
pp. 203 ◽  
Author(s):  
T. M. McBeath ◽  
R. D. Armstrong ◽  
E. Lombi ◽  
M. J. McLaughlin ◽  
R. E. Holloway

Recent field trials on alkaline soils in southern Australia showed significant grain yield responses to liquid compared with traditional granular forms of P fertiliser. However the advantages of liquid over granular P forms of fertiliser has not been consistent on all soil types. In order to better predict the soil types on which liquid P fertilisers are likely to have potential, a glasshouse trial was conducted to compare the responsiveness of wheat to both liquid and granular forms of P on a wide range of Australian soils. A granular P fertiliser (triple superphosphate) and 2 liquid fertilisers (phosphoric acid and ammonium polyphosphate) were compared at a rate equivalent to 12 kg P/ha in 29 soils representing many of the soil types used for grain production in Victoria and South Australia. Wheat biomass was enhanced by P application in 86% of the soils tested. In 62% of the P-responsive soils, wheat dry matter was significantly greater when liquid P fertilisers were used compared with the granular form. Chemical analysis of the soils tested showed that the better performance of liquid P forms was not correlated to total P concentration in soil, P buffer capacity, or P availability as measured by Colwell-P. However, there was a significant positive relationship between calcium carbonate (CaCO3) content of soil and wheat responsiveness to liquid P fertiliser.


2017 ◽  
Vol 142 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Richard J. Heerema ◽  
Dawn VanLeeuwen ◽  
Marisa Y. Thompson ◽  
Joshua D. Sherman ◽  
Mary J. Comeau ◽  
...  

Zinc deficiency is common in pecan (Carya illinoinensis) grown in alkaline, calcareous soils. Zinc (Zn)-deficient pecan leaves exhibit interveinal chlorosis, decreased leaf thickness, and reduced photosynthetic capacity. Low photosynthesis (Pn) contributes to restricted vegetative growth, flowering, and fruiting of Zn-deficient pecan trees. Our objectives were to measure effects of soil-applied ethylenediaminetetraacetic acid (EDTA)-chelated Zn fertilizer on gas exchange of immature ‘Wichita’ pecan and characterize the relationship between leaf Zn concentration and Pn. The study orchard had alkaline and calcareous soils and was planted in Spring 2011. Zinc was applied throughout each growing season as Zn EDTA through microsprinklers at rates of 0 (Control), 2.2, or 4.4 kg·ha−1 Zn. Leaf gas exchange and SPAD were measured on one occasion in the 2012 growing season, four in 2013, and five in 2014. Soil Zn-EDTA applications significantly increased the leaf tissue Zn concentration throughout the study. On all measurement occasions, net Pn was significantly increased by soil-applied Zn EDTA compared with the control, but Pn was not different between the two soil-applied Zn-EDTA treatments. Leaf Pn in midseason did not increase at leaf tissue Zn concentrations above 14–22 mg·kg−1. Leaf SPAD consistently followed a similar pattern to Pn. Soil Zn-EDTA application increased leaf stomatal conductance (gS) compared with the Control early through midseason but not after August. Intercellular CO2 concentration was significantly lower for Zn-EDTA-treated trees than the Control even on dates when there was no significant difference in gs, which suggests that soil application of Zn-EDTA alleviated nonstomatal limitations to Pn caused by Zn deficiency.


Sign in / Sign up

Export Citation Format

Share Document