scholarly journals Critical Path Statistics of Max-Plus Linear Systems with Gaussian Noise

2013 ◽  
Vol 50 (03) ◽  
pp. 654-670
Author(s):  
James Hook

The critical paths of a max-plus linear system with noise are random variables. In this paper we introduce theedge criticalitieswhich measure how often the critical paths traverse each edge in the precedence graph. We also present theparallel path approximation, a novel method for approximating these new statistics as well as the previously studied max-plus exponent. We show that, for low amplitude noise, the critical paths spend most of their time traversing the deterministic maximally weighted cycle and that, as the noise amplitude is increased, the critical paths become more random and their distribution over the edges in the precedence graph approaches a highly uniform measure of maximal entropy.

2013 ◽  
Vol 50 (3) ◽  
pp. 654-670 ◽  
Author(s):  
James Hook

The critical paths of a max-plus linear system with noise are random variables. In this paper we introduce the edge criticalities which measure how often the critical paths traverse each edge in the precedence graph. We also present the parallel path approximation, a novel method for approximating these new statistics as well as the previously studied max-plus exponent. We show that, for low amplitude noise, the critical paths spend most of their time traversing the deterministic maximally weighted cycle and that, as the noise amplitude is increased, the critical paths become more random and their distribution over the edges in the precedence graph approaches a highly uniform measure of maximal entropy.


2021 ◽  
pp. 1-43
Author(s):  
DOMINIC VECONI

Abstract We develop a thermodynamic formalism for a smooth realization of pseudo-Anosov surface homeomorphisms. In this realization, the singularities of the pseudo-Anosov map are assumed to be fixed, and the trajectories are slowed down so the differential is the identity at these points. Using Young towers, we prove existence and uniqueness of equilibrium states for geometric t-potentials. This family of equilibrium states includes a unique SRB measure and a measure of maximal entropy, the latter of which has exponential decay of correlations and the central limit theorem.


Author(s):  
Sidi M. Berri ◽  
J. M. Klosner

Abstract This paper investigates a new strategy for early detection of defects in a power transmission pair of spur gears. Sensitivity to local defects is enhanced by processing the signal as follows. The orthogonal discrete wavelet transform (ODWT) of the band-pass filtered averaged signal is first obtained. This is followed by thresholding in the wavelet domain, thereby removing the low amplitude noise contribution. The inverse wavelet transform then essentially reconstructs the component of the signal that is due to the defect. Experimental results demonstrate the efficiency of this procedure.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-24
Author(s):  
Mia Syafrina ◽  
Fandy Bestario Harlan

Construction projects are generally the most high-risk businesses, especially shipbuilding projects. Efforts to reduce the risk can be done by minimizing the potential risk. This study aims to see potential high risk and prevent delays in the completion of ship construction using the Critical Path Method CPM at PT. XYZ. By using the Critical Path Method CPM critical paths can be given more attention so that they will not interfere ship construction projects. In addition, it is also a form of anticipation if there is a delay, it is possible to reschedule.


Author(s):  
Shuxue Zou ◽  
Yanxin Huang ◽  
Yan Wang ◽  
Chengquan Hu ◽  
Yanchun Liang ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Mini Jayakrishnan ◽  
Alan Chang ◽  
Tony Tae-Hyoung Kim

Energy efficient semiconductor chips are in high demand to cater the needs of today’s smart products. Advanced technology nodes insert high design margins to deal with rising variations at the cost of power, area and performance. Existing run time resilience techniques are not cost effective due to the additional circuits involved. In this paper, we propose a design time resilience technique using a clock stretched flip-flop to redistribute the available slack in the processor pipeline to the critical paths. We use the opportunistic slack to redesign the critical fan in logic using logic reshaping, better than worst case sigma corner libraries and multi-bit flip-flops to achieve power and area savings. Experimental results prove that we can tune the logic and the library to get significant power and area savings of 69% and 15% in the execute pipeline stage of the processor compared to the traditional worst-case design. Whereas, existing run time resilience hardware results in 36% and 2% power and area overhead respectively.


2014 ◽  
Vol 548-549 ◽  
pp. 1646-1650 ◽  
Author(s):  
Yang Liu ◽  
Yan Li

It has been proved that the construction schedule management was an uncertain problem. Traditional CPM method was a good way to define the total duration and critical paths but can not solve uncertainty. The paper use CPM to define the duration and critical path firstly, then defined the parameters with Delphi and make Monte Carlo simulation. Through simulation results, it is found that the probability to finish the work on time was only 35.3%. The following step is to make sensitivity analysis, through the calculation, the work which has large influence was found and treat as key control points. It is proved that Monte Carlo simulation is useful to solve the problem of construction schedule management.


2002 ◽  
Vol 85 (2) ◽  
pp. 467-492 ◽  
Author(s):  
TIM BEDFORD ◽  
ALBERT M. FISHER ◽  
MARIUSZ URBAŃSKI

We define the scenery flow space at a point z in the Julia set J of a hyperbolic rational map $T : \mathbb{C} \to \mathbb{C}$ with degree at least 2, and more generally for T a conformal mixing repellor.We prove that, for hyperbolic rational maps, except for a few exceptional cases listed below, the scenery flow is ergodic. We also prove ergodicity for almost all conformal mixing repellors; here the statement is that the scenery flow is ergodic for the repellors which are not linear nor contained in a finite union of real-analytic curves, and furthermore that for the collection of such maps based on a fixed open set U, the ergodic cases form a dense open subset of that collection. Scenery flow ergodicity implies that one generates the same scenery flow by zooming down towards almost every z with respect to the Hausdorff measure $H^d$, where d is the dimension of J, and that the flow has a unique measure of maximal entropy.For all conformal mixing repellors, the flow is loosely Bernoulli and has topological entropy at most d. Moreover the flow at almost every point is the same up to a rotation, and so as a corollary, one has an analogue of the Lebesgue density theorem for the fractal set, giving a different proof of a theorem of Falconer.2000 Mathematical Subject Classification: 37F15, 37F35, 37D20.


2010 ◽  
Vol 28 (1) ◽  
pp. 61-68 ◽  
Author(s):  
E. BRADY TREXLER ◽  
ALEXANDER R.R. CASTI ◽  
YU ZHANG

AbstractIn the retina, rod bipolar (RBP) cells synapse with many rods, and suppression of rod outer segment and synaptic noise is necessary for their detection of rod single-photon responses (SPRs). Depending on the rods’ signal-to-noise ratio (SNR), the suppression mechanism will likely eliminate some SPRs as well, resulting in decreased quantum efficiency. We examined this synapse in rabbit, where 100 rods converge onto each RBP. Suction electrode recordings showed that rabbit rod SPRs were difficult to distinguish from noise (independent SNR estimates were 2.3 and 2.8). Nonlinear transmission from rods to RBPs improved response detection (SNR = 8.7), but a large portion of the rod SPRs was discarded. For the dimmest flashes, the loss approached 90%. Despite the high rejection ratio, noise of two distinct types was apparent in the RBP traces: low-amplitude rumblings and discrete events that resembled the SPR. The SPR-like event frequency suggests that they result from thermal isomerizations of rhodopsin, which occurred at the rate 0.033/s/rod. The presence of low-amplitude noise is explained by a sigmoidal input–output relationship at the rod—RBP synapse and the input of noisy rods. The rabbit rod SNR and RBP quantum efficiency are the lowest yet reported, suggesting that the quantum efficiency of the rod—RBP synapse may depend on the SNR in rods. These results point to the possibility that fewer photoisomerizations are discarded for species such as primate, which has a higher rod SNR.


Sign in / Sign up

Export Citation Format

Share Document