Heat stability of homogenized milk: role of interfacial protein

1994 ◽  
Vol 61 (4) ◽  
pp. 507-516 ◽  
Author(s):  
Catharina H. McCrae ◽  
David Hirst ◽  
Andrew J. R. Law ◽  
D. Donald Muir

SummaryThe role of interfacial protein in determining the heat stability of recombined milk was investigated by removing serum protein prior to homogenization and reincorporating it after homogenization. In addition, the surface protein composition of recombined fat globules was probed by analyses of protein load and by quantification of the individual surface protein components using FPLC. In the absence of serum protein, substantially more casein was bound to the fat surface during homogenization. Despite this, the detrimental effect of homogenization on heat stability did not occur when serum protein had been removed from the system. Reincorporation of serum protein after homogenization caused the heat coagulation time–pH profile to revert to a form very similar to that observed without removing serum protein from the system. Thus, adsorption of serum protein did not affect heat stability. It is more likely that heat-induced interactions of serum protein with surface-adsorbed casein promoted heat coagulation. Fat surface area rather than casein load affected these interfacial protein-protein interactions during heating.

2021 ◽  
Vol 43 (2) ◽  
pp. 767-781
Author(s):  
Vanessa Pinatto Gaspar ◽  
Anelise Cardoso Ramos ◽  
Philippe Cloutier ◽  
José Renato Pattaro Junior ◽  
Francisco Ferreira Duarte Junior ◽  
...  

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein–protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oksana Sorokina ◽  
Colin Mclean ◽  
Mike D. R. Croning ◽  
Katharina F. Heil ◽  
Emilia Wysocka ◽  
...  

AbstractGenes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein–protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


Author(s):  
Elise Delaforge ◽  
Sigrid Milles ◽  
Jie-rong Huang ◽  
Denis Bouvier ◽  
Malene Ringkjøbing Jensen ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Miaomiao Bai ◽  
Dongdong Ti ◽  
Qian Mei ◽  
Jiejie Liu ◽  
Xin Yan ◽  
...  

The human body is a complex structure of cells, which are exposed to many types of stress. Cells must utilize various mechanisms to protect their DNA from damage caused by metabolic and external sources to maintain genomic integrity and homeostasis and to prevent the development of cancer. DNA damage inevitably occurs regardless of physiological or abnormal conditions. In response to DNA damage, signaling pathways are activated to repair the damaged DNA or to induce cell apoptosis. During the process, posttranslational modifications (PTMs) can be used to modulate enzymatic activities and regulate protein stability, protein localization, and protein-protein interactions. Thus, PTMs in DNA repair should be studied. In this review, we will focus on the current understanding of the phosphorylation, poly(ADP-ribosyl)ation, ubiquitination, SUMOylation, acetylation, and methylation of six typical PTMs and summarize PTMs of the key proteins in DNA repair, providing important insight into the role of PTMs in the maintenance of genome stability and contributing to reveal new and selective therapeutic approaches to target cancers.


2020 ◽  
Author(s):  
Sharon Spizzichino ◽  
Dalila Boi ◽  
Giovanna Boumis ◽  
Roberta Lucchi ◽  
Francesca R. Liberati ◽  
...  

ABSTRACTDe novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: thymidylate synthase (TYMS), serine hydroxymethyltransferase (SHMT) and dihydrofolate reductase (DHFR), targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex (dTMP-SC). We report the intracellular dynamics of the complex in lung cancer cells by in situ proximity ligation assay, showing that it is also detected in the cytoplasm. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human TYMS and DHFR. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionary selected in eukaryotes to optimize protein-protein interactions. Lastly, our results on the activity of the complete thymidylate cycle in vitro, provide a useful tool to develop drugs targeting the entire complex instead of the individual components.


2021 ◽  
Author(s):  
Nikolaj Riis Christensen ◽  
Christian Parsbæk Pedersen ◽  
Vita Sereikaite ◽  
Jannik Nedergaard Pedersen ◽  
Maria Vistrup-Parry ◽  
...  

SUMMARYThe organization of the postsynaptic density (PSD), a protein-dense semi-membraneless organelle, is mediated by numerous specific protein-protein interactions (PPIs) which constitute a functional post-synapse. Postsynaptic density protein 95 (PSD-95) interacts with a manifold of proteins, including the C-terminal of transmembrane AMPA receptor (AMAPR) regulatory proteins (TARPs). Here, we uncover the minimal essential peptide responsible for the stargazin (TARP-γ2) mediated liquid-liquid phase separation (LLPS) formation of PSD-95 and other key protein constituents of the PSD. Furthermore, we find that pharmacological inhibitors of PSD-95 can facilitate formation of LLPS. We found that in some cases LLPS formation is dependent on multivalent interactions while in other cases short peptides carrying a high charge are sufficient to promote LLPS in complex systems. This study offers a new perspective on PSD-95 interactions and their role in LLPS formation, while also considering the role of affinity over multivalency in LLPS systems.


2008 ◽  
Vol 295 (5) ◽  
pp. F1314-F1323 ◽  
Author(s):  
Rebecca J. Clifford ◽  
Jack H. Kaplan

In eukaryotic cells, the apparent maintenance of 1:1 stoicheometry between the Na-K-ATPase α- and β-subunits led us to question whether this was alterable and thus if some form of regulation was involved. We have examined the consequences of overexpressing Na-K-ATPase β1-subunits using Madin-Darby canine kidney (MDCK) cells expressing flag-tagged β1-subunits (β1flag) or Myc-tagged β1-subunits (β1myc) under the control of a tetracycline-dependent promoter. The induction of β1flag subunit synthesis in MDCK cells, which increases β1-subunit expression at the plasma membrane by more than twofold, while maintaining stable α1 expression levels, revealed that all mature β1-subunits associate with α1-subunits, and no evidence of “free” β1-subunits was obtained. Consequently, the ratio of assembled β1- to α1-subunits is significantly increased when “extra” β-subunits are expressed. An increased β1/α1 stoicheometry is also observed in cells treated with tunicamycin, suggesting that the protein-protein interactions involved in these complexes are not dependent on glycosylation. Confocal images of cocultured β1myc-expressing and β1flag-expressing MDCK cells show colocalization of β1myc and β1flag subunits at the lateral membranes of neighboring cells, suggesting the occurrence of intercellular interactions between the β-subunits. Immunoprecipitation using MDCK cells constitutively expressing β1myc and tetracycline-regulated β1flag subunits confirmed β-β-subunit interactions. These results demonstrate that the equimolar ratio of assembled β1/α1-subunits of the Na-K-ATPase in kidney cells is not fixed by the inherent properties of the interacting subunits. It is likely that cellular mechanisms are present that regulate the individual Na-K-ATPase subunit abundance.


2006 ◽  
Vol 398 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Prim de Bie ◽  
Bart van de Sluis ◽  
Ezra Burstein ◽  
Karen J. Duran ◽  
Ruud Berger ◽  
...  

COMMD [copper metabolism gene MURR1 (mouse U2af1-rs1 region 1) domain] proteins constitute a recently identified family of NF-κB (nuclear factor κB)-inhibiting proteins, characterized by the presence of the COMM domain. In the present paper, we report detailed investigation of the role of this protein family, and specifically the role of the COMM domain, in NF-κB signalling through characterization of protein–protein interactions involving COMMD proteins. The small ubiquitously expressed COMMD6 consists primarily of the COMM domain. Therefore COMMD1 and COMMD6 were analysed further as prototype members of the COMMD protein family. Using specific antisera, interaction between endogenous COMMD1 and COMMD6 is described. This interaction was verified by independent techniques, appeared to be direct and could be detected throughout the whole cell, including the nucleus. Both proteins inhibit TNF (tumour necrosis factor)-induced NF-κB activation in a non-synergistic manner. Mutation of the amino acid residues Trp24 and Pro41 in the COMM domain of COMMD6 completely abolished the inhibitory effect of COMMD6 on TNF-induced NF-κB activation, but this was not accompanied by loss of interaction with COMMD1, COMMD6 or the NF-κB subunit RelA. In contrast with COMMD1, COMMD6 does not bind to IκBα (inhibitory κBα), indicating that both proteins inhibit NF-κB in an overlapping, but not completely similar, manner. Taken together, these data support the significance of COMMD protein–protein interactions and provide new mechanistic insight into the function of this protein family in NF-κB signalling.


Sign in / Sign up

Export Citation Format

Share Document