scholarly journals Interactome Analysis of KIN (Kin17) Shows New Functions of This Protein

2021 ◽  
Vol 43 (2) ◽  
pp. 767-781
Author(s):  
Vanessa Pinatto Gaspar ◽  
Anelise Cardoso Ramos ◽  
Philippe Cloutier ◽  
José Renato Pattaro Junior ◽  
Francisco Ferreira Duarte Junior ◽  
...  

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein–protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea Bogutzki ◽  
Natalie Naue ◽  
Lidia Litz ◽  
Andreas Pich ◽  
Ute Curth

Abstract During DNA replication in E. coli, a switch between DnaG primase and DNA polymerase III holoenzyme (pol III) activities has to occur every time when the synthesis of a new Okazaki fragment starts. As both primase and the χ subunit of pol III interact with the highly conserved C-terminus of single-stranded DNA-binding protein (SSB), it had been proposed that the binding of both proteins to SSB is mutually exclusive. Using a replication system containing the origin of replication of the single-stranded DNA phage G4 (G4ori) saturated with SSB, we tested whether DnaG and pol III can bind concurrently to the primed template. We found that the addition of pol III does not lead to a displacement of primase, but to the formation of higher complexes. Even pol III-mediated primer elongation by one or several DNA nucleotides does not result in the dissociation of DnaG. About 10 nucleotides have to be added in order to displace one of the two primase molecules bound to SSB-saturated G4ori. The concurrent binding of primase and pol III is highly plausible, since even the SSB tetramer situated directly next to the 3′-terminus of the primer provides four C-termini for protein-protein interactions.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


Author(s):  
Elise Delaforge ◽  
Sigrid Milles ◽  
Jie-rong Huang ◽  
Denis Bouvier ◽  
Malene Ringkjøbing Jensen ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Miaomiao Bai ◽  
Dongdong Ti ◽  
Qian Mei ◽  
Jiejie Liu ◽  
Xin Yan ◽  
...  

The human body is a complex structure of cells, which are exposed to many types of stress. Cells must utilize various mechanisms to protect their DNA from damage caused by metabolic and external sources to maintain genomic integrity and homeostasis and to prevent the development of cancer. DNA damage inevitably occurs regardless of physiological or abnormal conditions. In response to DNA damage, signaling pathways are activated to repair the damaged DNA or to induce cell apoptosis. During the process, posttranslational modifications (PTMs) can be used to modulate enzymatic activities and regulate protein stability, protein localization, and protein-protein interactions. Thus, PTMs in DNA repair should be studied. In this review, we will focus on the current understanding of the phosphorylation, poly(ADP-ribosyl)ation, ubiquitination, SUMOylation, acetylation, and methylation of six typical PTMs and summarize PTMs of the key proteins in DNA repair, providing important insight into the role of PTMs in the maintenance of genome stability and contributing to reveal new and selective therapeutic approaches to target cancers.


2021 ◽  
Author(s):  
Megan Payne ◽  
Olga Tsaponina ◽  
Gillian Caalim ◽  
Hayley Greenfield ◽  
Leanne Milton-Harris ◽  
...  

Wnt signalling is an evolutionary conserved signal transduction pathway heavily implicated in normal development and disease. The central mediator of this pathway, β-catenin, is frequently overexpressed, mislocalised and overactive in acute myeloid leukaemia (AML) where it mediates the establishment, maintenance and drug resistance of leukaemia stem cells. Critical to the stability, localisation and activity of β-catenin are the protein-protein interactions it forms, yet these are poorly defined in AML. We recently performed the first β-catenin interactome study in blood cells of any kind and identified a plethora of novel interacting partners. This study shows for the first time that β-catenin interacts with Wilms tumour protein (WT1), a protein frequently overexpressed and mutated in AML, in both myeloid cell lines and also primary AML samples. We demonstrate crosstalk between the signalling activity of these two proteins in myeloid cells, and show that modulation of either protein can affect expression of the other. Finally, we demonstrate that WT1 mutations frequently observed in AML can increase stabilise β-catenin and augment Wnt signalling output. This study has uncovered new context-dependent molecular interactions for β-catenin which could inform future therapeutic strategies to target this dysregulated molecule in AML.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Humza A. Khan ◽  
Manish J. Butte

Abstract Background Inborn errors of immunity (IEI) are a group of genetic disorders that impair the immune system, with over 400 genes described so far, and hundreds more to be discovered. To facilitate the search for new genes, we need a way to prioritize among all the genes in the genome those most likely to play an important role in immunity. Results Here we identify a new list of genes by linking known IEI genes to new ones by using open-source databases of protein-protein interactions, post-translational modifications, and transcriptional regulation. We analyze this new set of 2,530 IEI-related genes for their tolerance of genetic variation and by their expression levels in various immune cell types. Conclusions By merging genes derived from protein interactions of known IEI genes with transcriptional data, we offer a new list of candidate genes that may play a role in as-yet undiscovered IEIs.


2021 ◽  
Author(s):  
Nikolaj Riis Christensen ◽  
Christian Parsbæk Pedersen ◽  
Vita Sereikaite ◽  
Jannik Nedergaard Pedersen ◽  
Maria Vistrup-Parry ◽  
...  

SUMMARYThe organization of the postsynaptic density (PSD), a protein-dense semi-membraneless organelle, is mediated by numerous specific protein-protein interactions (PPIs) which constitute a functional post-synapse. Postsynaptic density protein 95 (PSD-95) interacts with a manifold of proteins, including the C-terminal of transmembrane AMPA receptor (AMAPR) regulatory proteins (TARPs). Here, we uncover the minimal essential peptide responsible for the stargazin (TARP-γ2) mediated liquid-liquid phase separation (LLPS) formation of PSD-95 and other key protein constituents of the PSD. Furthermore, we find that pharmacological inhibitors of PSD-95 can facilitate formation of LLPS. We found that in some cases LLPS formation is dependent on multivalent interactions while in other cases short peptides carrying a high charge are sufficient to promote LLPS in complex systems. This study offers a new perspective on PSD-95 interactions and their role in LLPS formation, while also considering the role of affinity over multivalency in LLPS systems.


2018 ◽  
Author(s):  
Michael A. Skinnider ◽  
Nichollas E. Scott ◽  
Anna Prudova ◽  
Nikolay Stoynov ◽  
R. Greg Stacey ◽  
...  

SummaryCellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the complete network of biologically relevant protein-protein interactions, the interactome, has therefore been a central objective of high-throughput biology. Yet, because widely used methods for high-throughput interaction discovery rely on heterologous expression or genetically manipulated cell lines, the dynamics of protein interactions across physiological contexts are poorly understood. Here, we use a quantitative proteomic approach combining protein correlation profiling with stable isotope labelling of mammals (PCP SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide the first proteome-scale survey of interactome dynamics across mammalian tissues, revealing over 27,000 unique interactions with an accuracy comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewiring of protein interactions across tissues is widespread, and is poorly predicted by gene expression or coexpression. Rewired proteins are tightly regulated by multiple cellular mechanisms and implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.


2008 ◽  
Vol 295 (5) ◽  
pp. F1314-F1323 ◽  
Author(s):  
Rebecca J. Clifford ◽  
Jack H. Kaplan

In eukaryotic cells, the apparent maintenance of 1:1 stoicheometry between the Na-K-ATPase α- and β-subunits led us to question whether this was alterable and thus if some form of regulation was involved. We have examined the consequences of overexpressing Na-K-ATPase β1-subunits using Madin-Darby canine kidney (MDCK) cells expressing flag-tagged β1-subunits (β1flag) or Myc-tagged β1-subunits (β1myc) under the control of a tetracycline-dependent promoter. The induction of β1flag subunit synthesis in MDCK cells, which increases β1-subunit expression at the plasma membrane by more than twofold, while maintaining stable α1 expression levels, revealed that all mature β1-subunits associate with α1-subunits, and no evidence of “free” β1-subunits was obtained. Consequently, the ratio of assembled β1- to α1-subunits is significantly increased when “extra” β-subunits are expressed. An increased β1/α1 stoicheometry is also observed in cells treated with tunicamycin, suggesting that the protein-protein interactions involved in these complexes are not dependent on glycosylation. Confocal images of cocultured β1myc-expressing and β1flag-expressing MDCK cells show colocalization of β1myc and β1flag subunits at the lateral membranes of neighboring cells, suggesting the occurrence of intercellular interactions between the β-subunits. Immunoprecipitation using MDCK cells constitutively expressing β1myc and tetracycline-regulated β1flag subunits confirmed β-β-subunit interactions. These results demonstrate that the equimolar ratio of assembled β1/α1-subunits of the Na-K-ATPase in kidney cells is not fixed by the inherent properties of the interacting subunits. It is likely that cellular mechanisms are present that regulate the individual Na-K-ATPase subunit abundance.


Sign in / Sign up

Export Citation Format

Share Document