Influence of different systems for feeding supplements to grazing dairy cows on milk fatty acid composition

2014 ◽  
Vol 81 (2) ◽  
pp. 156-163 ◽  
Author(s):  
Ghazal Akbaridoust ◽  
Tim Plozza ◽  
Victor C Trenerry ◽  
William J Wales ◽  
Martin J Auldist ◽  
...  

This study investigated the effects of different strategies for feeding supplements to grazing dairy cows on the proportions of fatty acids in milk. Two hundred and sixteen cows were fed supplementary grain and forage according to one of 3 different strategies; (1) Control: cows grazed perennial ryegrass pasture (14 kg dry matter/d) supplemented with milled barley grain fed in the milking parlour and pasture silage offered in the paddock; (2) Partial mixed ration 1 (PMR1): same pasture allotment and supplement as Control strategy, but the supplements presented as a mixed ration after each milking in feedpad, and; (3) Partial mixed ration 2 (PMR2): same pasture allotment, supplemented with a mixed ration of milled barley grain, alfalfa hay, corn silage and crushed corn grain fed in a feedpad. Within each strategy, cows were assigned to receive either 6, 8, 10 or 12 kg dry matter supplement/cow per d. Milk fatty acid proportions from cows fed Control and PMR1 strategies were similar and different from those fed PMR2, particularly at 10 to 12 kg dry matter supplement/cow per d. The reduction in milk fat yield and concentration in cows fed high amounts of supplement as Control and PMR1 was coincident with 4 × increase in 10t-18:1 proportion. The composition of the partial mixed ration (PMR) and the amount offered affected milk fatty acid proportions and milk fat content, however, the method of supplementation did not.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Rodrigo N S Torres ◽  
João P A Bertoco ◽  
Maria C G de Arruda ◽  
Julia L Rodrigues ◽  
Larissa M Coelho ◽  
...  

Abstract The use of glycerin in diets for dairy cows initially emerged as an alternative for the prevention and control of ketosis. However, despite some controversy, there are still several studies associating glycerin with increases in daily milk yield, with possible changes in its constituents. Therefore, the objective of this study was to evaluate, using a meta-analysis approach, the effect of glycerin inclusion in dairy cow diets on milk fatty acid. Twenty-two peer-reviewed publications with 66 treatment means were included in data set. The effect of glycerin inclusion in diet (treatment) were evaluated using random-effect models to examine the weighted mean differences (WMD) between a control diet (without glycerin in the diet) and the treatment diet. Heterogeneity was explored by meta-regression and subgroup analysis performed for: genetic type; days in milk; experimental period; glycerin in diet; glycerin type and concentrate in diet. Inclusion of glycerin in the diet increased the digestibility of dry matter and protein, as well as ruminal propionate. It did not affect dry matter intake (P = 0.351) and milk yield (P = 0.730). The effect of glycerin inclusion on the milk fat yield is dependent on the genetic group, in which Holstein (WMD = −0.04 kg/d; P = 0.010) and Holstein-crossbreed (WMD = −0.10 kg/d; P < 0.0001) cows produced less fat in milk compared to Jersey cows, when glycerin was included in the diets. Glycine inclusions of up to 100 g/kg in the diet of dairy cows did not negatively affect milk production and composition. However, inclusions above 150 g/kg of glycerin in the diet reduced the concentration of fat, and of unsaturated, monounsaturated, polyunsaturated fatty acids and conjugated linoleic acid (CLA C18: 2 cis-9 and trans-11) in milk. The results reported in our meta-analysis does not demonstrate the effectiveness of glycerin in improving the composition of milk and a group of fatty acids of importance for human health such as C18: 2 cis-9, trans-11 CLA.


2018 ◽  
Vol 58 (7) ◽  
pp. 1233 ◽  
Author(s):  
E. Morales-Almaráz ◽  
B. de la Roza-Delgado ◽  
A. Soldado ◽  
A. Martínez-Fernández ◽  
A. González ◽  
...  

Milk fatty acid (FA) profiles of lactating Holstein dairy cows were determined to evaluate the effects of parity (primiparous or multiparous) and the grazing time (0, 6 and 12 h), complementary to a total mixed ration, in a 2 × 3 factorial design. The interaction of parity with grazing time did not affect milk production and protein content; however, dry matter intake of herbage, total dry matter intake and milk fat content were affected by the interaction (P < 0.05). Both factors affected the milk concentration of monounsaturated FAs. The 18 : 3 cis9 cis12, 18 : 2 cis9 trans11, and 18 : 3 cis9 cis12 cis15 concentrations in milk were higher (P < 0.05) in primiparous cows. Milk 18 : 2 cis9 trans11 concentration in primiparous cows with 12 h grazing (1.17 g/100 g FA) was 44% and 57% higher than with 6 h and 0 h grazing (0.66 and 0.50 g/100 g FA, respectively). Similar pattern was observed for 18 : 3 cis9 cis12 cis15. The milk 18 : 1 trans11 concentration was higher (P < 0.05) with 6 h and 12 h grazing than without grazing. In conclusion, the parity would appear to mainly affect the proportion of short-chain FAs, and had an important influence on the proportions of 18 : 2 cis9 trans11, and 18 : 3 cis9 cis12 cis15. These FAs and also 18 : 1 trans11 were modified by grazing time.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Liliana Elisabet Antonacci ◽  
Gerardo Antonio Gagliostro

The objective was to determine the effect of increasing intake of a mixture (75:25) of soybean (SO) and linseed  (LO) oils on milk production and composition and milk fatty acid (FA) profile in grazing dairy cows. Twenty-four Holstein cows were assigned to 4 treatments in a completely randomized design with three weeks of adaptation to oil doses and one week of experimental measurements. On a dry matter (DM) basis, cows were fed pasture (63%), energy concentrate (37%) and the SO-LO oil mixture at zero (T0), 2% (T2%), 4% (T4%) and 6% (T6%) of total DM intake equivalent to 0, 0.36, 0.72 and 1.08 kg cow-1 day-1 of the oil mixture. The oil blend was manually mixed to the concentrate (7.04 kg DM cow-1 day-1) and supplied by halves during each milking time without refusals. Pasture (P = 0.49) and total DM intakes (P = 0.31) were similar between treatments averaging 11.27 and 18.85 kg DM cow-1 day-1 respectively. Milk production (22.71 kg cow-1 day-1) was not affected (P = 0.46). Milk fat content decreased linearly (P < 0.05) from 3.20 (T0) to 2.67 g 100 g-1 (T6%) without effects (P = 0.73) on fat or fat corrected milk (4%FCM) yields. Milk protein concentration (P < 0.56) or yields (P < 0.11 were not affected. Lactose content tended (P < 0.08) to be higher in oil supplemented cows and milk urea nitrogen was not affected (P = 0.14). The basal (T0%) concentration (g 100 g-1 FA) of total hypercholesterolemic FA (C12:0, C14:0 and C16:0) of milk averaged 38.93 and decreased linearly (P < 0.0001) with oil intake to 37.81 (T2%), 31.59 (T4%) and 29.18 (T6%). Levels of elaidic (trans-9 C18:1) and trans-10 C18:1 FA resulted low in the basal (T0%) milk (0.21 and 0.20 g 100 g-1 FA respectively) but increased linearly (P < 0.0001) after oil intake reaching the maximum values at T6% (0.73 and 2.23 g 100 g-1 FA respectively). Milk concentration (g 100 g-1 FA) of vaccenic acid (trans-11 C18:1, VA) averaged 3.63 in T0% and increased linearly (P < 0.0001) with oil intake reaching 4.97, 7.05 and 8.38 in T2%, T4% and T6%, respectively. Basal concentration of rumenic acid (cis-9. trans-11 C18:2, RA) was 2.28 g 100 g-1 FA and increased linearly (P < 0.0001) with increased oil dose resulting in maximal plateau in T4% (3.88) and T6% (3.89). The basal  atherogenic index (AI) of milk was 1.87 and linearly decreased (P < 0.01) to 1.64 (T2%), 1.18 (T4%) and 0.95 (T6%) after oil intake. The basal n-6/n-3 ratio (3.57) did not differ (P > 0.05) from T2% (3.37) but was higher (P < 0.05) in T4% (4.41) and T6% (4.63) remaining under the recommended value of 5:1. Taken together the results suggest that feeding a blend (75:25; SO:LO) of SO an LO oils at 4% of total DM intake to grazing dairy cows maximize the milk RA content with a concomitant decrease in the hypercholesterolemic FA of milk maintaining a healthy n− 6/n−3 ratio with low levels of the detrimental trans-9 C18:1 and trans-10 C18:1.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


Animals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 57 ◽  
Author(s):  
Frank Dunshea ◽  
Kehinde Oluboyede ◽  
Kristy DiGiacomo ◽  
Brian Leury ◽  
Jeremy Cottrell

Betaine is an organic osmolyte sourced from sugar beet that accumulates in plant cells undergoing osmotic stress. Since the accumulation of betaine lowers the energy requirements of animals and, therefore, metabolic heat production, the aim of this experiment was to investigate if betaine supplementation improved milk yield in grazing dairy cows in summer. One hundred and eighteen Friesian × Holstein cows were paired on days in milk and, within each pair, randomly allocated to a containing treatment of either 0 or 2 g/kg natural betaine in their concentrate ration for approximately 3 weeks during February/March 2015 (summer in Australia). The mean maximum February temperature was 30 °C. Cows were allocated approximately 14 kg dry matter pasture and 7.5 kg of concentrate pellets (fed in the milking shed) per cow per day and were milked through an automatic milking system three times per day. Betaine supplementation increased average daily milk yield by over 6% (22.0 vs. 23.4 kg/day, p < 0.001) with the response increasing as the study progressed as indicated by the interaction (p < 0.001) between betaine and day. Milk fat % (p = 0.87), milk protein % (p = 0.90), and milk somatic cell count (p = 0.81) were unchanged by dietary betaine. However, betaine supplementation increased milk protein yield (677 vs. 719 g/day, p < 0.001) and fat yield (874 vs. 922 g/day, p < 0.001) with responses again being more pronounced as the study progressed. In conclusion, dietary betaine supplementation increased milk and component yield during summer in grazing dairy cows.


1982 ◽  
Vol 22 (116) ◽  
pp. 155 ◽  
Author(s):  
SC Valentine ◽  
RB Wickes

Four groups of seven Friesian cows were offered 70% of their calculated metabolizable energy requirements as pasture hay and either 2.4, 4.8 or 7.2 kg/d of dry matter (DM) as wet brewers' grains or 3.9 kg DM/d as rolled barley. A further group of cows received no supplement. The quantities of brewers' grains offered were calculated from in vitro digestible DM content to provide lo%, 20% and 30%, respectively, of metabolizable energy requirements and the rolled barley 30% of metabolizable energy requirements. The cows consumed a mean of 2.2,4.3 and 6.1 kg DM/d, respectively, as brewers' grains and 3.9 kg DM/d as rolled barley. The daily yields of milk (litres), protein (kg) and solids not fat (kg), respectively, were greater (P < 0.05) for the cows offered brewers' grains at 4.8 kg DM/d (1 5.6,0.49, 1.36) and 7.2 kg DM/d (16.4, 0.54, 1.45) than for the cows offered rolled barley (13.3, 0.45, 1.21). Daily yields of milk fat from the cows offered either 4.8 or 7.2 kg DM/d of brewers' grains or rolled barley did not differ significantly. There were no significant differences between treatments in liveweight change. It was concluded that wet brewers' grains and rolled barley offered as supplements to dairy cows fed hay have similar nutritive values for milk production. It was calculated that for milk fat production the break even landed price ratio of brewers' grains to barley is 1:1.26.


2003 ◽  
Vol 2003 ◽  
pp. 107-107
Author(s):  
M. H. Fathi ◽  
A. Nikkhah

Cereal grains can provide the major source of energy in diets in order to meet the nutrient requirements of high producing dairy cows. However the amount of starch that can be included in the diets of dairy cows is limited particularly if starch is rapidly fermented such as barley starch. Reduction of feed intake, rumen pH, milk fat test, microbial growth and other metabolic disorders are expected if ruminally degradable starch is fed in amount that cant be efficiently metabolized by rumen microbs. Various techniques for processing barley grain have been developed to decrease the degradability of dry matter in rumen without reducing its extent of digestion. McNiven (1995) showed roasting of barley is more effective treatment. The objective of this experiment was to study of effects the roasting and ammoniation of barley grain on rumen pH, feces pH, milk yield and milk composition in dairy cows.


animal ◽  
2015 ◽  
Vol 9 (4) ◽  
pp. 604-613 ◽  
Author(s):  
M. Coppa ◽  
A. Farruggia ◽  
P. Ravaglia ◽  
D. Pomiès ◽  
G. Borreani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document