Across-generation effects of maternal heat stress during late gestation on production, female fertility and longevity traits in dairy cows

2021 ◽  
pp. 1-7
Author(s):  
Cordula Kipp ◽  
Kerstin Brügemann ◽  
Peter Zieger ◽  
Katja Mütze ◽  
Sibylle Möcklinghoff-Wicke ◽  
...  

Abstract This research paper focuses on time-lagged heat stress (HS) effects from an across-generation perspective. Temperature × humidity indexes (THI) from the last 8 weeks of pregnancy were associated with subsequent female offspring performances. The offspring dataset considered 172 905 Holstein dairy cows from calving years 2002–2013 from 1,968 herds, located in the German federal state of Hesse. Production traits included milk yield (MKG), protein percentage (PRO%), fat percentage (FAT%), somatic cell score (SCS) and milk urea nitrogen (MUN) from the first official test-day in first lactation. Female fertility traits were the non-return-rate after 56 d (NRR56) in heifers and the interval from calving to first insemination (ICFI) in first parity cows. Longevity traits were the length of productive life (LPL), lifetime productivity in milk yield (LTP-MKG) and milk yield per day of life (MKG-DL). The association analyzes for 10 traits combined with meteorological data from 8 single weeks before calving implied in total 80 different runs. THI ≥50 from all single 8 weeks before calving had unfavorably significant effects on FAT%, ICFI and LPL. Heat stress in terms of THI ≥60 from the last 3 weeks before calving impaired MKG. NRR56 decreased with increasing THI, as observed for all 6 weeks before calving. LTP-MKG and MKG-DL decreased due to high THI in the last 4 weeks before calving. Heat stress (THI ≥60) during late pregnancy had no significantly unfavorable impact on PRO% and MUN. Interestingly, SCS in offspring declined with increasing THI during late pregnancy. In conclusion, for most of the primary and functional traits, unfavorable impact of HS from the dry period on time-lagged performances in offspring was identified, even on longevity. From a practical perspective, our data suggest to provide HS abatement to late gestation dams to avoid long-term adverse effects on the offspring.

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Jang-Hoon Jo ◽  
Jalil Ghassemi Nejad ◽  
Dong-Qiao Peng ◽  
Hye-Ran Kim ◽  
Sang-Ho Kim ◽  
...  

This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
A. Boustan ◽  
V. Vahedi ◽  
M. Abdi Farab ◽  
H. Karami ◽  
R. Seyedsharifi ◽  
...  

2016 ◽  
Vol 2 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Mahmud Al Reyad ◽  
Md Abid Hasan Sarker ◽  
Md Elias Uddin ◽  
Raihan Habib ◽  
Md Harun Ur Rashid

The aim of this research was to observe the effect of heat stress on milk yield and milk compositions of Holstein Friesian crossbred (HF) dairy cows. To fulfill the objectives, a total of 9 Holstein Friesian crossbred cows were selected for this study. Green grasses (German, Para) were supplied adlibitum and concentrate feeds (mixture of wheat bran, rice polish, mustard oil cake, di-calcium phosphate and salt) were supplied at the rate of 2.0 kg/day/cow. Management practices for all the cows were similar following the BAU Dairy farm practices. Data were collected on milk yield (l/h/d), relative humidity (%) and barn temperature (0C). The obtained temperature humidity index (THI) of July, August, September and October were 84.95, 81.99, 81.40 and 79.57, respectively. The highest THI was found in July which indicated higher heat stress during this month. A significant difference (p<0.05) in milk yield of cows was found among different months of July to October. The highest milk yield (6.10±0.50 l/h/d) was found in October among observed months. The compositions of milk such as total solids (TS), solids-not-fat (SNF), fat, protein, lactose, and ash also differed significantly (p<0.01). The highest values (%) of TS, SNF, fat, protein, lactose and ash content of milk were found in October as 12.63, 8.80, 3.83, 3.69, 4.39 and 0.72, respectively and lowest values (%) were in July as 12.20, 8.50, 3.71, 3.50, 4.30 and 0.69, respectively due to the high THI value. From these results, it is concluded that heat stress has strong effect on milk yield and milk composition of HF cows in Bangladesh. Management strategies are needed to minimize heat stress and attain optimal dairy animal performance.Asian J. Med. Biol. Res. June 2016, 2(2): 190-195


Author(s):  
Rajalaxmi Behera ◽  
Ajoy Mandal ◽  
Saroj Rai ◽  
M. Karunakaran ◽  
Mohan Mondal ◽  
...  

Background: Genotype environment interaction plays vital role in animal productivity. Heat stress is one of the major environmental stressor affecting milk production and measured in terms of temperature humidity index (THI). Indian milk industry largely depends on crossbred cows bearing different degree of exotic inheritance. Thus, the role of genotype (genetic group) of the crossbred cows and environment (THI) interaction plays vital role in Indian climate which is mostly tropical in nature. Therefore, study was undertaken to examine the existence of genetic group × THI in crossbred dairy cows reared at institute herd of ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal. Methods: A total of 12364 records each of monthly milk yield (MMY) and average daily milk yield in a month (AMY) of crossbred cows spanned over twenty two years (1994-2015) and weather parameters(temperature and relative humidity) for the corresponding years were collected from institute records. The data were classified into 8 genetic groups according to the genetic composition and 3 THI groups (THI less than 72, THI 72-78 and THI above 78). The interaction model was used to study the G×E interaction study using least squares analysis. Result: Effect of non-genetic factors (parity, period of calving and stage of lactation) was found to be highly significant (P less than 0.01) and genetic group × THI was significant (P less than 0.05) of on both MMY and AMY. Genetic group bearing 50% Jersey and 50% Red Sindhi or Tharparkar were the most heat tolerant breeds. Jersey crossbred cows were more heat tolerant than Holstein crossbred cows. Crossbred cows with 50% Jersey inheritance performed better than higher Jersey inheritance during periods of THI above 72.


2019 ◽  
Vol 86 (1) ◽  
pp. 19-24
Author(s):  
Hossein Naeemipour Younesi ◽  
Mohammad Mahdi Shariati ◽  
Saeed Zerehdaran ◽  
Mehdi Jabbari Nooghabi ◽  
Peter Løvendahl

AbstractThe main objective of this study was to compare the performance of different ‘nonlinear quantile regression’ models evaluated at theτth quantile (0·25, 0·50, and 0·75) of milk production traits and somatic cell score (SCS) in Iranian Holstein dairy cows. Data were collected by the Animal Breeding Center of Iran from 1991 to 2011, comprising 101 051 monthly milk production traits and SCS records of 13 977 cows in 183 herds. Incomplete gamma (Wood), exponential (Wilmink), Dijkstra and polynomial (Ali & Schaeffer) functions were implemented in the quantile regression. Residual mean square, Akaike information criterion and log-likelihood from different models and quantiles indicated that in the same quantile, the best models were Wilmink for milk yield, Dijkstra for fat percentage and Ali & Schaeffer for protein percentage. Over all models the best model fit occurred at quantile 0·50 for milk yield, fat and protein percentage, whereas, for SCS the 0·25th quantile was best. The best model to describe SCS was Dijkstra at quantiles 0·25 and 0·50, and Ali & Schaeffer at quantile 0·75. Wood function had the worst performance amongst all traits. Quantile regression is specifically appropriate for SCS which has a mixed multimodal distribution.


2007 ◽  
Vol 87 (3) ◽  
pp. 285-289 ◽  
Author(s):  
Nilufer Sabuncuoglu ◽  
Omer Coban

The objectives of this study were to determine the relationship between udder floor area (UFA) and milk production traits in dairy cows, pre- and post-milking, as well as to examine the usefulness of a simple method of measuring UFA. The absolute reduction (AR, cm2) and relative reduction (RR, %) in UFA post-milking relative to pre-milking was calculated. Absolute reduction was influenced by breed and lactation stage, but not by parity of the cows (P < 0.05). There was no effect of breed and stage of lactation on the RR of UFA. Moderate correlations were observed between absolute reduction of UFA and daily milk yield (r2 = 0.422), lactation milk yield (r2 = 0.426), and absolute fat yield (r2 = 0.515) (P < 0.01 and P < 0.05). Moderate and weak correlations were found between RR of UFA and daily milk yield (r2 = 0.335) (P < 0.01), AR of the udder area and the 305-d lactation milk yield (r2 = 0.326) (P < 0.10). It was concluded that measuring UFA using the method described may be useful for the selection of dairy cattle mammary conformation traits. Key words: Dairy cow, udder and teat conformation, milk production traits, measurement technique


2001 ◽  
Vol 84 (6) ◽  
pp. 1468-1479 ◽  
Author(s):  
T.W.J. Keady ◽  
C.S. Mayne ◽  
D.A. Fitzpatrick ◽  
M.A. McCoy

2019 ◽  
Vol 48 (1) ◽  
pp. 57-66
Author(s):  
MA Islam ◽  
MB Sarker ◽  
A Khatun ◽  
MR Amin ◽  
M Moniruzzaman

Supplementation of concentrate feed during late pregnancy of doe is an approach to improve milk yield and kid performance after kidding. The experiment was conducted to find out appropriate level and duration of supplementation to the pregnant doe. The data of the experiment were analyzed applying Completely Randomized Design (CRD) with factorial arrangements with three replications. First factor used in the experiment was the duration of concentrate feeding (15 days, 30 days, 45 days and 60 days) and second was amount of concentrate supplemented (2.00%, 1.75%, 1.50% and 1.25% of their body weight). Birth weight, weaning weight, milk yield and kid mortality in different groups were recorded. Birth weight and weaning weight were found higher in 60 days supplemented group i.e. 2.3±0.23 kg and 10.94±0.41 kg, respectively. Both birth weight and weaning weight were also found higher with 2 percent concentrate feeding group than others i.e. 2.1±0.23 kg and 9.64±0.42 kg, respectively. Milk yield recorded for fourth week shows that higher milk yields were found in 2 percent concentrate supplemented group with 60 days time period. The result showed that by increasing the level of concentrate during late gestation period of does increased the birth weight, weaning weight of kids and increased milk yield of does. So the higher level of concentrate supplementation is required during 45 to 60 days of late gestation in does. Bang. J. Anim. Sci. 2019. 48 (1): 57-66


Sign in / Sign up

Export Citation Format

Share Document