Disturbing vortices

2001 ◽  
Vol 426 ◽  
pp. 95-133 ◽  
Author(s):  
N. J. BALMFORTH ◽  
STEFAN G. LLEWELLYN SMITH ◽  
W. R. YOUNG

Inviscid spatially compact vortices (such as the Rankine vortex) have discrete Kelvin modes. For these modes, the critical radius, at which the rotation frequency of the wave matches the angular velocity of the fluid, lies outside the vortex core. When such a vortex is not perfectly compact, but has a weak vorticity distribution beyond the core, these Kelvin disturbances are singular at the critical radius and become ‘quasi-modes’. These are not true eigenmodes but have streamfunction perturbations that decay exponentially with time while the associated vorticity wraps up into a tight spiral without decay. We use a matched asymptotic expansion to derive a simplified description of weakly nonlinear, externally forced quasi-modes.We consider the excitation and subsequent evolution of finite-amplitude quasi- modes excited with azimuthal wavenumber 2. Provided the forcing amplitude is below a certain critical amplitude, the quasi-mode decays and the disturbed vortex returns to axisymmetry. If the amplitude of the forcing is above critical, then nonlinear effects arrest the decay and cat's eye patterns form. Thus the vortex is permanently deformed into a tripolar structure.

2001 ◽  
Vol 429 ◽  
pp. 343-380 ◽  
Author(s):  
BRUCE R. SUTHERLAND

The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic internal wavepackets are examined analytically and by numerical simulations. The weakly nonlinear dispersion relation for horizontally periodic, vertically compact internal waves is derived and the results are applied to assess the stability of weakly nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of constant phase make with the vertical, the wavepackets are predicted to be unstable if [mid ]Θ[mid ] < Θc, where Θc = cos−1 (2/3)1/2 ≃ 35.3° is the angle corresponding to internal waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets with [mid ]Θ[mid ] > Θc decreases over time; the amplitude of wavepackets with [mid ]Θ[mid ] < Θc increases initially, but then decreases as the wavepacket subdivides into a wave train, following the well-known Fermi–Pasta–Ulam recurrence phenomenon.If the initial wavepacket is of sufficiently large amplitude, it becomes unstable in the sense that eventually it convectively overturns. Two new analytic conditions for the stability of quasi-plane large-amplitude internal waves are proposed. These are qualitatively and quantitatively different from the parametric instability of plane periodic internal waves. The ‘breaking condition’ requires not only that the wave is statically unstable but that the convective instability growth rate is greater than the frequency of the waves. The critical amplitude for breaking to occur is found to be ACV = cot Θ (1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical displacement of the wave to its horizontal wavelength. A second instability condition proposes that a statically stable wavepacket may evolve so that it becomes convectively unstable due to resonant interactions between the waves and the wave-induced mean flow. This hypothesis is based on the assumption that the resonant long wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves linearly in time, continues to amplify the waves in the fully nonlinear regime. Using linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)1/2. The results of numerical simulations of horizontally periodic, vertically compact wavepackets show excellent agreement with this latter stability condition. However, for wavepackets with horizontal extent comparable with the horizontal wavelength, the wavepacket is found to be stable at larger amplitudes than predicted if Θ [lsim ] 45°. It is proposed that these results may explain why internal waves generated by turbulence in laboratory experiments are often observed to be excited within a narrow frequency band corresponding to Θ less than approximately 45°.


2011 ◽  
Vol 686 ◽  
pp. 272-298 ◽  
Author(s):  
A. Chekila ◽  
C. Nouar ◽  
E. Plaut ◽  
A. Nemdili

AbstractIn a recent article (Nouar, Bottaro & Brancher, J. Fluid. Mech., vol. 592, 2007, pp. 177–194), a linear stability analysis of plane Poiseuille flow of shear-thinning fluids has been performed. The authors concluded that the viscosity stratification delays the transition and that is important to account for the viscosity perturbation. The current paper focuses on the first-principles understanding of the influence of the viscosity stratification and the nonlinear variation of the effective viscosity $\ensuremath{\mu} $ with the shear rate $\dot {\gamma } $ on the flow stability with respect to a finite-amplitude perturbation. A weakly nonlinear analysis, using the amplitude expansion method, is adopted as a first approach to study nonlinear effects. The bifurcation to two-dimensional travelling waves is studied. For the numerical computations, the shear-thinning behaviour is described by the Carreau model. The rheological parameters are varied in a wide range. The results indicate that (i) the nonlinearity of the viscous terms tends to reduce the viscous dissipation and to accelerate the flow, (ii) the harmonic generated by the nonlinearity $\ensuremath{\mu} (\dot {\gamma } )$ is smaller and in opposite phase to that generated by the quadratic nonlinear inertial terms and (iii) with increasing shear-thinning effects, the bifurcation becomes highly subcritical. Consequently, the magnitude of the threshold amplitude of the perturbation, beyond which the flow is nonlinearly unstable, decreases. This result is confirmed by computing higher order-Landau constants.


Author(s):  
Edvige Pucci ◽  
Giuseppe Saccomandi ◽  
Luigi Vergori

We study the propagation of linearly polarized transverse waves in a pre-strained incompressible isotropic elastic solid. Both finite and small-but-finite amplitude waves are examined. Irrespective of the magnitude of the wave amplitude, these waves may propagate only if the (unit) normal to the plane spanned by the directions of propagation and polarization is a principal direction of the left Cauchy–Green deformation tensor associated with the pre-strained state. A rigorous asymptotic analysis of the equations governing the propagation of waves of small but finite amplitude reveals that the time scale over which the nonlinear effects become significant depends on the direction along which the wave travels. Moreover, we design theoretically an experimental procedure to determine the Landau constants of the fourth-order weakly nonlinear theory of elasticity.


1999 ◽  
Vol 396 ◽  
pp. 73-108 ◽  
Author(s):  
D. M. MASON ◽  
R. R. KERSWELL

A direct numerical simulation is presented of an elliptical instability observed in the laboratory within an elliptically distorted, rapidly rotating, fluid-filled cylinder (Malkus 1989). Generically, the instability manifests itself as the pairwise resonance of two different inertial modes with the underlying elliptical flow. We study in detail the simplest ‘subharmonic’ form of the instability where the waves are a complex conjugate pair and which at weakly supercritical elliptical distortion should ultimately saturate at some finite amplitude (Waleffe 1989; Kerswell 1992). Such states have yet to be experimentally identified since the flow invariably breaks down to small-scale disorder. Evidence is presented here to support the argument that such weakly nonlinear states are never seen because they are either unstable to secondary instabilities at observable amplitudes or neighbouring competitor elliptical instabilities grow to ultimately disrupt them. The former scenario confirms earlier work (Kerswell 1999) which highlights the generic instability of inertial waves even at very small amplitudes. The latter represents a first numerical demonstration of two competing elliptical instabilities co-existing in a bounded system.


1979 ◽  
Vol 90 (1) ◽  
pp. 161-178 ◽  
Author(s):  
R. H. J. Grimshaw

A Helmholtz velocity profile with velocity discontinuity 2U is embedded in an infinite continuously stratified Boussinesq fluid with constant Brunt—Väisälä frequency N. Linear theory shows that this system can support resonant over-reflexion, i.e. the existence of neutral modes consisting of outgoing internal gravity waves, whenever the horizontal wavenumber is less than N/2½U. This paper examines the weakly nonlinear theory of these modes. An equation governing the evolution of the amplitude of the interface displacement is derived. The time scale for this evolution is α−2, where α is a measure of the magnitude of the interface displacement, which is excited by an incident wave of magnitude O(α3). It is shown that the mode which is symmetrical with respect to the interface (and has a horizontal phase speed equal to the mean of the basic velocity discontinuity) remains neutral, with a finite amplitude wave on the interface. However, the other modes, which are not symmetrical with respect to the interface, become unstable owing to the self-interaction of the primary mode with its second harmonic. The interface displacement develops a singularity in a finite time.


2021 ◽  
Vol 118 (14) ◽  
pp. e2019348118
Author(s):  
Guillaume Vanderhaegen ◽  
Corentin Naveau ◽  
Pascal Szriftgiser ◽  
Alexandre Kudlinski ◽  
Matteo Conforti ◽  
...  

The classical theory of modulation instability (MI) attributed to Bespalov–Talanov in optics and Benjamin–Feir for water waves is just a linear approximation of nonlinear effects and has limitations that have been corrected using the exact weakly nonlinear theory of wave propagation. We report results of experiments in both optics and hydrodynamics, which are in excellent agreement with nonlinear theory. These observations clearly demonstrate that MI has a wider band of unstable frequencies than predicted by the linear stability analysis. The range of areas where the nonlinear theory of MI can be applied is actually much larger than considered here.


2011 ◽  
Vol 666 ◽  
pp. 104-145 ◽  
Author(s):  
ROMAIN LAGRANGE ◽  
PATRICE MEUNIER ◽  
FRANÇOIS NADAL ◽  
CHRISTOPHE ELOY

In this paper, the instability of a fluid inside a precessing cylinder is addressed theoretically and experimentally. The precessional motion forces Kelvin modes in the cylinder, which can become resonant for given precessional frequencies and cylinder aspect ratios. When the Reynolds number is large enough, these forced resonant Kelvin modes eventually become unstable. A linear stability analysis based on a triadic resonance between a forced Kelvin mode and two additional free Kelvin modes is carried out. This analysis allows us to predict the spatial structure of the instability and its threshold. These predictions are compared to the vorticity field measured by particle image velocimetry with an excellent agreement. When the Reynolds number is further increased, nonlinear effects appear. A weakly nonlinear theory is developed semi-empirically by introducing a geostrophic mode, which is triggered by the nonlinear interaction of a free Kelvin mode with itself in the presence of viscosity. Amplitude equations are obtained coupling the forced Kelvin mode, the two free Kelvin modes and the geostrophic mode. They show that the instability saturates to a fixed point just above threshold. Increasing the Reynolds number leads to a transition from a steady saturated regime to an intermittent flow in good agreement with experiments. Surprisingly, this weakly nonlinear model still gives a correct estimate of the mean flow inside the cylinder even far from the threshold when the flow is turbulent.


1995 ◽  
Vol 287 ◽  
pp. 225-249 ◽  
Author(s):  
Philip Hall

The effect of an unsteady shear flow on the planform of convection in a Boussinesq fluid heated from below is investigated. In the absence of the shear flow it is well-known, if non-Boussinesq effects can be neglected, that convection begins in the form of a supercritical bifurcation to rolls. Subcritical convection in the form of say hexagons can be induced by non-Boussinesq behaviour which destroys the symmetry of the basic state. Here it is found that the symmetry breaking effects associated with an unsteady shear flow are not sufficient to cause subcritical convection so the problem reduces to the determination of how the orientations of roll cells are modified by an unsteady shear flow. Recently Kelly & Hu (1993) showed that such a flow has a significant stabilizing effect on the linear stability problem and that, for a wide range of Prandtl numbers, the effect is most pronounced in the low-frequency limit. In the present calculation it is shown that the stabilizing effects found by Kelly & Hu (1993) do survive for most frequencies when nonlinear effects and imperfections are taken into account. However a critical size of the frequency is identified below which the Kelly & Hu (1993) conclusions no longer carry through into the nonlinear regime. For frequencies of size comparable with this critical size it is shown that the convection pattern changes in time. The cell pattern is found to be extremely complicated and straight rolls exist only for part of a period.


2022 ◽  
Vol 933 ◽  
Author(s):  
Pranav Thakare ◽  
Vineeth Nair ◽  
Krishnendu Sinha

Linear interaction analysis (LIA) is routinely used to study the shock–turbulence interaction in supersonic and hypersonic flows. It is based on the inviscid interaction of elementary Kovásznay modes with a shock discontinuity. LIA neglects nonlinear effects, and hence it is limited to small-amplitude disturbances. In this work, we extend the LIA framework to study the fundamental interaction of a two-dimensional vorticity wave with a normal shock. The predictions from a weakly nonlinear framework are compared with high-order accurate numerical simulations over a range of wave amplitudes ( $\epsilon$ ), incidence angles ( $\alpha$ ) and shock-upstream Mach numbers ( $M_1$ ). It is found that the nonlinear generation of vorticity at the shock has a significant contribution from the intermodal interaction between vorticity and acoustic waves. Vorticity generation is also strongly influenced by the curvature of the normal shock wave, especially for high incidence angles. Further, the weakly nonlinear analysis is able to predict the correct scaling of the nonlinear effects observed in the numerical simulations. The analysis also predicts a Mach number dependent limit for the validity of LIA in terms of the maximum possible amplitude of the upstream vorticity wave.


2020 ◽  
Vol 222 (1) ◽  
pp. 338-351 ◽  
Author(s):  
F Gerick ◽  
D Jault ◽  
J Noir ◽  
J Vidal

SUMMARY We investigate the pressure torque between the fluid core and the solid mantle arising from magnetohydrodynamic modes in a rapidly rotating planetary core. A 2-D reduced model of the core fluid dynamics is developed to account for the non-spherical core–mantle boundary. The simplification of such a quasi-geostrophic model rests on the assumption of invariance of the equatorial components of the fluid velocity along the rotation axis. We use this model to investigate and quantify the axial torques of linear modes, focusing on the torsional Alfvén modes (TM) in an ellipsoid. We verify that the periods of these modes do not depend on the rotation frequency. Furthermore, they possess angular momentum resulting in a net pressure torque acting on the mantle. This torque scales linearly with the equatorial ellipticity. We estimate that for the TM calculated here topographic coupling to the mantle is too weak to account for the variations in the Earth’s length-of-day.


Sign in / Sign up

Export Citation Format

Share Document