Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids

2001 ◽  
Vol 437 ◽  
pp. 13-28 ◽  
Author(s):  
LEO R. M. MAAS

Rotating fluids support waves. These inertial waves propagate obliquely through the fluid, with an angle that is fixed with respect to the rotation axis. Upon reflection, their wavelength is unchanged only when the wall obeys the local reflectional symmetry, that is, when it is either parallel or perpendicular to the rotation axis. For internal gravity waves in a density-stratified fluid, sloping boundaries thus break the symmetry of ray paths, in a two-dimensional container, predicting their focusing upon attractors: particular paths onto which the wave rays, and hence the energy, converge, and to which the wave energy returns after a small number of refections. Laboratory observations, presented here, show that, despite the intrinsic three-dimensionality of inertial waves, attractors still occur. The intensified wave energy on the attractor encourages centrifugal instabilities, leading to a mean flow. Evidence of this comes from dye spreading, observed to develop most rapidly over the location where the attractor reflects from the sloping wall, being the place where focusing and instabilities occur. This mean flow, resulting from the mixing of angular momentum, accompanying the intensification of the wave field at that location, has geophysical implications, because the ocean, atmosphere and Earth's liquid outer core can be regarded as asymmetrically contained. The relevance of wave focusing in a rotating, spherical shell, the modifications due to the addition of radial stratification, and its implications for observed equatorial current patterns and inertial oscillations are discussed. The well-known universality of oceanic, gravito-inertial wave spectra might reflect complementary, divergent (chaotic) wave-ray behaviour, which occurs in containers obeying the reflectional symmetry, but in which symmetry is broken in the horizontal plane. Periodic orbits still exist, but now repell.

1997 ◽  
Vol 15 (12) ◽  
pp. 1570-1580 ◽  
Author(s):  
N. M. Gavrilov

Abstract. The mechanism of generation of internal gravity waves (IGW) by mesoscale turbulence in the troposphere is considered. The equations that describe the generation of waves by hydrodynamic sources of momentum, heat and mass are derived. Calculations of amplitudes, wave energy fluxes, turbulent viscosities, and accelerations of the mean flow caused by IGWs generated in the troposphere are made. A comparison of different mechanisms of turbulence production in the atmosphere by IGWs shows that the nonlinear destruction of a primary IGW into a spectrum of secondary waves may provide additional dissipation of nonsaturated stable waves. The mean wind increases both the effectiveness of generation and dissipation of IGWs propagating in the direction of the wind. Competition of both effects may lead to the dominance of IGWs propagating upstream at long distances from tropospheric wave sources, and to the formation of eastward wave accelerations in summer and westward accelerations in winter near the mesopause.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


Author(s):  
Gary A. Glatzmaier

This chapter examines how boundary and geometry affect convection. It begins with a discussion of how one can implement “absorbing” top and bottom boundaries, which reduce the large-amplitude convectively driven flows within shallow boundary layers or the reflection of internal gravity waves off these boundaries in a stable stratification. It then considers how to replace the impermeable side boundary conditions with permeable periodic side boundary conditions to allow fluid flow through these boundaries and nonzero mean flow. It also introduces “two and a half dimensional” geometry within a cartesian box geometry and describes how a fully 3D cartesian box model could be constructed. Finally, it presents a model of convection in a fully 3D spherical-shell and shows how it can be easily reduced to a 2.5D spherical-shell model. The horizontal structures are represented in terms of spherical harmonic expansions.


2016 ◽  
Vol 73 (6) ◽  
pp. 2465-2484 ◽  
Author(s):  
Orli Lachmy ◽  
Nili Harnik

Abstract The wave spectrum and zonal-mean-flow maintenance in different flow regimes of the jet stream are studied using a two-layer modified quasigeostrophic (QG) model. As the wave energy is increased by varying the model parameters, the flow transitions from a subtropical jet regime to a merged jet regime and then to an eddy-driven jet regime. The subtropical jet is maintained at the Hadley cell edge by zonal-mean advection of momentum, while eddy heat flux and eddy momentum flux convergence (EMFC) are weak and concentrated far poleward. The merged jet is narrow and persistent and is maintained by EMFC from a narrow wave spectrum, dominated by zonal wavenumber 5. The eddy-driven jet is wide and fluctuating and is maintained by EMFC from a wide wave spectrum. The wave–mean flow feedback mechanisms that maintain each regime are explained qualitatively. The regime transitions are related to transitions in the wave spectrum. An analysis of the wave energy spectrum budget and a comparison with a quasi-linear version of the model show that the balance maintaining the spectrum in the merged and subtropical jet regimes is mainly a quasi-linear balance, whereas in the eddy-driven jet regime nonlinear inverse energy cascade takes place. The amplitude and wavenumber of the dominant wave mode in the merged and subtropical jet regimes are determined by the constraint that this mode would produce the wave fluxes necessary for maintaining a mean flow that is close to neutrality. In contrast, the equilibrated mean flow in the eddy-driven jet regime is weakly unstable.


1971 ◽  
Vol 50 (3) ◽  
pp. 545-563 ◽  
Author(s):  
R. J. Breeding

The behaviour of internal gravity waves near a critical level is investigated by means of a transient two dimensional finite difference model. All the important non-linear, viscosity and thermal conduction terms are included, but the rotational terms are omitted and the perturbations are assumed to be incompressible. For Richardson numbers greater than 2·0 the interaction of the incident wave and the mean flow is largely as predicted by the linear theory–very little of the incident wave penetrates through the critical level and almost all of the wave's energy and momentum are absorbed by changes in the original wind. However, these changes in the wind are centred above the critical level, so that the change in the wind has only a small effect on the height of the critical level. For Richardson numbers less than 2·0 and greater than 0·25 a significant fraction of the incident wave is reflected, part of which could have been predicted by the linear theory. For these stable Richardson numbers a steady state is apparently reached where the maximum wind change continues to grow slowly, but the minimum Richardson number and wave magnitudes remain constant. This condition represents a balance between the diffusion outward of the added momentum and the rate at which it is absorbed. For Richardson numbers less than 0·25, over-reflexion, predicted from the linear theory, is observed, but because the system is dynamically unstable no over-reflecting steady state is ever reached.


2017 ◽  
Vol 10 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Alp Albayrak ◽  
Deniz A Bezgin ◽  
Wolfgang Polifke

Acoustic waves passing through a swirler generate inertial waves in rotating flow. In the present study, the response of a premixed flame to an inertial wave is scrutinized, with emphasis on the fundamental fluid-dynamic and flame-kinematic interaction mechanism. The analysis relies on linearized reactive flow equations, with a two-part solution strategy implemented in a finite element framework: Firstly, the steady state, low-Mach number, Navier–Stokes equations with Arrhenius type one-step reaction mechanism are solved by Newton’s method. The flame impulse response is then computed by transient solution of the analytically linearized reactive flow equations in the time domain, with mean flow quantities provided by the steady-state solution. The corresponding flame transfer function is retrieved by fitting a finite impulse response model. This approach is validated against experiments for a perfectly premixed, lean, methane-air Bunsen flame, and then applied to a laminar swirling flame. This academic case serves to investigate in a generic manner the impact of an inertial wave on the flame response. The structure of the inertial wave is characterized by modal decomposition. It is shown that axial and radial velocity fluctuations related to the eigenmodes of the inertial wave dominate the flame front modulations. The dispersive nature of the eigenmodes plays an important role in the flame response.


Sign in / Sign up

Export Citation Format

Share Document