Flow about a circular cylinder between parallel walls

2001 ◽  
Vol 440 ◽  
pp. 1-25 ◽  
Author(s):  
LUIGINO ZOVATTO ◽  
GIANNI PEDRIZZETTI

The flow about a body placed inside a channel differs from its unbounded counterpart because of the effects of wall confinement, shear in the incoming velocity profile, and separation of vorticity from the channel walls. The case of a circular cylinder placed between two parallel walls is here studied numerically with a finite element method based on the vorticity–streamfunction formulation for values of the Reynolds number consistent with a two-dimensional assumption.The transition from steady flow to a periodic vortex shedding regime has been analysed: transition is delayed as the body approaches one wall because the interaction between the cylinder wake and the wall boundary layer vorticity constrains the separating shear layer, reducing its oscillations. The results confirm previous observations of the inhibition of vortex shedding for a body placed near one wall. The unsteady vortex shedding regime changes, from a pattern similar to the von Kármán street (with some differences) when the body is in about the centre of the channel, to a single row of same-sign vortices as the body approaches one wall. The separated vortex dynamics leading to this topological modification is presented.The mean drag coefficients, once they have been normalized properly, are comparable when the cylinder is placed at different distances from one wall, down to gaps less than one cylinder diameter. At smaller gaps the body behaves similarly to a surface-mounted obstacle. The lift force is given by a repulsive component plus an attractive one. The former, well known from literature, is given by the deviation of the wake behind the body. Evidence of the latter, which is a consequence of the shear in front of the body, is given.

2017 ◽  
Vol 812 ◽  
pp. 698-720 ◽  
Author(s):  
Guo-Sheng He ◽  
Jin-Jun Wang ◽  
Chong Pan ◽  
Li-Hao Feng ◽  
Qi Gao ◽  
...  

The dynamics of vortical structures in flow over a circular cylinder in the vicinity of a flat plate is investigated using particle image velocimetry (PIV). The cylinder is placed above the flat plate with its axis parallel to the wall and normal to the flow direction. The Reynolds number $Re_{D}$ based on the cylinder diameter $D$ is 1072 and the gap $G$ between the cylinder and the flat plate is varied from gap-to-diameter ratio $G/D=0$ to $G/D=3.0$. The flow statistics and vortex dynamics are strongly dependent on the gap ratio $G/D$. Statistics show that as the cylinder comes close to the wall ($G/D\leqslant 2.0$), the cylinder wake becomes more and more asymmetric and a boundary layer separation is induced on the flat plate downstream of the cylinder. The wake vortex shedding frequency increases with decreasing $G/D$ until a critical gap ratio (about $G/D=0.25$) below which the vortex shedding is irregular. The deflection of the gap flow away from the wall and its following interaction with the upper shear layer may be the cause of the higher shedding frequency. The vortex dynamics is investigated based on the phase-averaged flow field and virtual dye visualization in the instantaneous PIV velocity field. It is revealed that when the cylinder is close to the wall ($G/D=2.0$), the cylinder wake vortices can periodically induce secondary spanwise vortices near the wall. As the cylinder approaches the wall ($G/D=1.0$) the secondary vortex can directly interact with the lower wake vortex, and a further approaching of the cylinder ($G/D=0.5$) can result in more complex interactions among the secondary vortex, the lower wake vortex and the upper wake vortex. The breakdown of vortices into filamentary debris during vortex interactions is clearly revealed by the coloured virtual dye visualizations. For $G/D<0.25$, the lower shear layer is strongly inhibited and only the upper shear layer can shed vortices. Investigation of the vortex formation, evolution and interaction in the flow promotes the understanding of the flow physics for different gap ratios.


Author(s):  
Nadeem Ahmed Sheikh ◽  
M. Afzaal Malik ◽  
Arshad Hussain Qureshi ◽  
M. Anwar Khan ◽  
Shahab Khushnood

Flow past a blunt body, such as a circular cylinder, usually experiences boundary layer separation and very strong flow oscillations in the wake region behind the body at a discrete frequency that is correlated to the Reynolds number of the flow. The periodic nature of the vortex shedding phenomenon can sometimes lead to unwanted structural vibrations. The effect of vibrating instability of a single cylinder is investigated in a uniform flow using the power of computational methods. Fluid structure coupling procedure predicts the fluid forces responsible for structural vibrations. An implicit approach to the solution of the unsteady two-dimensional Navier-Stokes equations is used for computation of flow parameters. Calculations are performed in parallel using a domain re-meshing/deforming technique with efficient communication requirements. Results for the unsteady shedding flow behind a circular cylinder are presented with experimental comparisons, showing the feasibility of accurate, efficient, time-dependent estimation of shedding frequency and resulting vibrations.


1976 ◽  
Vol 78 (3) ◽  
pp. 561-576 ◽  
Author(s):  
A. Richter ◽  
E. Naudascher

The fluctuating lift and drag acting on a long, rigidly supported circular cylinder placed symmetrically in a narrow rectangular duct were investigated for various blockage percentages over a wide range of Reynolds numbers around the critical value. The data obtained permit a full assessment of the effect of confinement on the mean-drag coefficient, the root-mean-square values of both the drag and the lift fluctuations, the Strouhal number of the dominant vortex shedding, and the Reynolds number marking transition from laminar to turbulent flow separation. Besides experimental information on a subject on which little is known so far, the paper provides a basis for the deduction of better correction procedures concerning the effects of blockage.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Xidong Zhang ◽  
Hulin Huang ◽  
Yin Zhang ◽  
Hongyan Wang

The predictions of flow structure, vortex shedding, and drag force around a circular cylinder are promoted by both academic interest and a wide range of practical situations. To control the flow around a circular cylinder, a magnetic obstacle is set upstream of the circular cylinder in this study for active controlling the separated flow behind bluff obstacle. Moreover, the changing of position, size, and intensity of magnetic obstacle is easy. The governing parameters are the magnetic obstacle width (d/D = 0.0333, 0.1, and 0.333) selected on cylinder diameter, D, and position (L/D) ranging from 2 to 11.667 at fixed Reynolds number Rel (based on the half-height of the duct) of 300 and the relative magnetic effect given by the Hartmann number Ha of 52. Results are presented in terms of instantaneous contours of vorticity, streamlines, drag coefficient, Strouhal number, pressure drop penalty, and local and average Nusselt numbers for various magnetic obstacle widths and positions. The computed results show that there are two flow patterns, one with vortex shedding from the magnetic obstacle and one without vortex shedding. The optimum conditions for drag reduction are L/D = 2 and d/D = 0.0333–0.333, and under these conditions, the pressure drop penalty is acceptable. However, the maximum value of the mean Nusselt number of the downstream cylinder is about 93% of that for a single cylinder.


Author(s):  
D. Sumner ◽  
O. O. Akosile

An experimental investigation was conducted of a circular cylinder immersed in a uniform planar shear flow, where the approach velocity varies across the diameter of the cylinder. The study was motivated by some apparent discrepancies between numerical and experimental studies of the flow, and the general lack of experimental data, particularly in the subcritical Reynolds number regime. Of interest was the direction and origin of the steady mean lift force experienced by the cylinder, which has been the subject of contradictory results in the literature, and for which measurements have rarely been reported. The circular cylinder was tested at Reynolds numbers from Re = 4.0×104 − 9.0×104, and the dimensionless shear parameter ranged from K = 0.02 − 0.07, which corresponded to a flow with low to moderate shear. The results showed that low to moderate shear has no appreciable influence on the Strouhal number, but has the effect of lowering the mean drag coefficient. The circular cylinder develops a small steady mean lift force directed towards the low-velocity side, which is attributed to an asymmetric mean static pressure distribution on its surface. The reduction in the mean drag force, however, cannot be attributed solely to this asymmetry.


1979 ◽  
Vol 92 (2) ◽  
pp. 269-301 ◽  
Author(s):  
R. E. Britter ◽  
J. C. R. Hunt ◽  
J. C. Mumford

The flow of grid-generated turbulence past a circular cylinder is investigated using hot-wire anemometry over a Reynolds number range from 4·25 × 103 to 2·74 × 104 and a range of intensities from 0·025 to 0·062. Measurements of the mean velocity distribution, and r.m.s. intensities and spectral energy densities of the turbulent velocity fluctuations are presented for various radial and circumferential positions relative to the cylinder, and for ratios of the cylinder radius a to the scale of the incident turbulence Lx ranging from 0·05 to 1·42. The influence of upstream conditions on the flow in the cylinder wake and its associated induced velocity fluctuations is discussed.For all measurements, detailed comparison is made with the theoretical predictions of Hunt (1973). We conclude the following. The amplification and reduction of the three components of turbulence (which occur in different senses for the different components) can be explained qualitatively in terms of the distortion by the mean flow of the turbulent vorticity and the ‘blocking’ or ‘source’ effect caused by turbulence impinging on the cylinder surface. The relative importance of the first effect over the second increases as a/Lx increases or the distance from the cylinder surface increases.Over certain ranges of the variables involved, the measurements are in quantitative agreement with the predictions of the asymptotic theory when a/Lx [Lt ] 1, a/Lx [Gt ] 1 or |k| a [Gt ] 1 (where k is the wavenumber).The incident turbulence affects the gross properties of the flow in the cylinder wake, but the associated velocity fluctuations are probably statistically independent of those in the incident flow.The dissipation of turbulent energy is greater in the straining flow near the cylinder than in the approach flow. Some estimates for this effect are proposed.


1999 ◽  
Vol 202 (23) ◽  
pp. 3423-3430 ◽  
Author(s):  
J.J. Videler ◽  
U.K. Muller ◽  
E.J. Stamhuis

Vertebrates swimming with undulations of the body and tail have inflection points where the curvature of the body changes from concave to convex or vice versa. These inflection points travel down the body at the speed of the running wave of bending. In movements with increasing amplitudes, the body rotates around the inflection points, inducing semicircular flows in the adjacent water on both sides of the body that together form proto-vortices. Like the inflection points, the proto-vortices travel towards the end of the tail. In the experiments described here, the phase relationship between the tailbeat cycle and the inflection point cycle can be used as a first approximation of the phase between the proto-vortex and the tailbeat cycle. Proto-vortices are shed at the tail as body vortices at roughly the same time as the inflection points reach the tail tip. Thus, the phase between proto-vortex shedding and tailbeat cycle determines the interaction between body and tail vortices, which are shed when the tail changes direction. The shape of the body wave is under the control of the fish and determines the position of vortex shedding relative to the mean path of motion. This, in turn, determines whether and how the body vortex interacts with the tail vortex. The shape of the wake and the contribution of the body to thrust depend on this interaction between body vortex and tail vortex. So far, we have been able to describe two types of wake. One has two vortices per tailbeat where each vortex consists of a tail vortex enhanced by a body vortex. A second, more variable, type of wake has four vortices per tailbeat: two tail vortices and two body vortices shed from the tail tip while it is moving from one extreme position to the next. The function of the second type is still enigmatic.


Author(s):  
Kazem Reza-Asl ◽  
Saeed Foshat

Examination of the flat and curved plates flying close to the ground is an appropriate approach in understanding the complexity of flow behavior near a solid or liquid surface. When a body flies close to a surface, the vortex structure behind the body is changed; therefore, the resultant lift force is more than zero. This phenomenon is named “ground effect”. In this study, flat and curved plates submerged in the ground boundary layer were numerically investigated under the ground effect. After validating the desired numerical code, the influences of adding porous layer to the plates with [Formula: see text] attack angle were examined on vortex structure and flow separation behind the plate under the ground effect. The obtained results revealed that using a porous zone significantly reduced the separation zone and changed the vortex shedding structure downstream of the plates.


2007 ◽  
Vol 592 ◽  
pp. 89-115 ◽  
Author(s):  
A. MILIOU ◽  
A. DE VECCHI ◽  
S. J. SHERWIN ◽  
J. M. R. GRAHAM

Three-dimensional spectral/hp computations have been performed to study the fundamental mechanisms of vortex shedding in the wake of curved circular cylinders at Reynolds numbers of 100 and 500. The basic shape of the body is a circular cylinder whose centreline sweeps through a quarter section of a ring and the inflow direction lies on the plane of curvature of the quarter ring: the free stream is then parallel to the geometry considered and the part of the ring that is exposed to it will be referred to as the ‘leading edge’. Different configurations were investigated with respect to the leading-edge orientation. In the case of a convex-shaped geometry, the stagnation face is the outer surface of the ring: this case exhibited fully three-dimensional wake dynamics, with the vortex shedding in the upper part of the body driving the lower end at one dominant shedding frequency for the whole cylinder span. The vortex-shedding mechanism was therefore not governed by the variation of local normal Reynolds numbers dictated by the curved shape of the leading edge. A second set of simulations were conducted with the free stream directed towards the inside of the ring, in the so-called concave-shaped geometry. No vortex shedding was detected in this configuration: it is suggested that the strong axial flow due to the body's curvature and the subsequent production of streamwise vorticity plays a key role in suppressing the wake dynamics expected in the case of flow past a straight cylinder. The stabilizing mechanism stemming from the concave curved geometry was still found to govern the wake behaviour even when a vertical extension was added to the top of the concave ring, thereby displacing the numerical symmetry boundary condition at this point away from the top of the deformed cylinder. In this case, however, the axial flow from the deformed cylinder was drawn into the wake of vertical extension, weakening the shedding process expected from a straight cylinder at these Reynolds numbers. These considerations highlight the importance of investigating flow past curved cylinders using a full three-dimensional approach, which can properly take into account the role of axial velocity components without the limiting assumptions of a sectional analysis, as is commonly used in industrial practice. Finally, towing-tank flow visualizations were also conducted and found to be in qualitative agreement with the computational findings.


Author(s):  
Hajime Nakamura

Omnidirectional reductions in drag and fluctuating forces can be achieved for a circular cylinder subjected to cross-flow by attaching cylindrical rings along its span at an interval of several diameters. In this work, the effects of ring configuration, the diameter D, spanwise width W, and spanwise pitch P, on the vortex shedding suppression was investigated. As a result, it was found that the periodicity in the pressure fluctuation on the sides of the cylinder disappeared for Red ≥ 20000 at ring configurations of D/d = 1.3, W/d = 1 and P/d ≈ 3. At this configuration, the fluctuating lift force reduced markedly to about 1/30 of a 2D cylinder due to the suppression of the periodic shedding together with the weakening of the spanwise correlation. The mechanism of this was explored through flow visualizations and PIV measurements, which was considered as follows: A spanwise pressure gradient originated from a stepwise change in the diameter induces a spanwise flow, which brings the corner vortex to the side of the ring. This promotes the turbulent transition in the shear layer separated from the ring for Red ≥ 20000. As a result, the wake behind the ring markedly shrinks, which induces a pair of large transverse circulations just behind the ring edges. Consequently, two-dimensional spanwise vortices are obstructed to form, resulting in the suppression of the periodicity in the vortex shedding.


Sign in / Sign up

Export Citation Format

Share Document