Control of Separation Zone Behind a Flat Plate Under the Ground Effect Using Porous Lamination, Mathematical Modeling

Author(s):  
Kazem Reza-Asl ◽  
Saeed Foshat

Examination of the flat and curved plates flying close to the ground is an appropriate approach in understanding the complexity of flow behavior near a solid or liquid surface. When a body flies close to a surface, the vortex structure behind the body is changed; therefore, the resultant lift force is more than zero. This phenomenon is named “ground effect”. In this study, flat and curved plates submerged in the ground boundary layer were numerically investigated under the ground effect. After validating the desired numerical code, the influences of adding porous layer to the plates with [Formula: see text] attack angle were examined on vortex structure and flow separation behind the plate under the ground effect. The obtained results revealed that using a porous zone significantly reduced the separation zone and changed the vortex shedding structure downstream of the plates.

2001 ◽  
Vol 440 ◽  
pp. 1-25 ◽  
Author(s):  
LUIGINO ZOVATTO ◽  
GIANNI PEDRIZZETTI

The flow about a body placed inside a channel differs from its unbounded counterpart because of the effects of wall confinement, shear in the incoming velocity profile, and separation of vorticity from the channel walls. The case of a circular cylinder placed between two parallel walls is here studied numerically with a finite element method based on the vorticity–streamfunction formulation for values of the Reynolds number consistent with a two-dimensional assumption.The transition from steady flow to a periodic vortex shedding regime has been analysed: transition is delayed as the body approaches one wall because the interaction between the cylinder wake and the wall boundary layer vorticity constrains the separating shear layer, reducing its oscillations. The results confirm previous observations of the inhibition of vortex shedding for a body placed near one wall. The unsteady vortex shedding regime changes, from a pattern similar to the von Kármán street (with some differences) when the body is in about the centre of the channel, to a single row of same-sign vortices as the body approaches one wall. The separated vortex dynamics leading to this topological modification is presented.The mean drag coefficients, once they have been normalized properly, are comparable when the cylinder is placed at different distances from one wall, down to gaps less than one cylinder diameter. At smaller gaps the body behaves similarly to a surface-mounted obstacle. The lift force is given by a repulsive component plus an attractive one. The former, well known from literature, is given by the deviation of the wake behind the body. Evidence of the latter, which is a consequence of the shear in front of the body, is given.


2014 ◽  
Vol 11 (98) ◽  
pp. 20140505 ◽  
Author(s):  
Erica J. Kim ◽  
Marta Wolf ◽  
Victor Manuel Ortega-Jimenez ◽  
Stanley H. Cheng ◽  
Robert Dudley

Aerodynamic performance and energetic savings for flight in ground effect are theoretically maximized during hovering, but have never been directly measured for flying animals. We evaluated flight kinematics, metabolic rates and induced flow velocities for Anna's hummingbirds hovering at heights (relative to wing length R = 5.5 cm) of 0.7 R , 0.9 R , 1.1 R , 1.7 R , 2.2 R and 8 R above a solid surface. Flight at heights less than or equal to 1.1 R resulted in significant reductions in the body angle, tail angle, anatomical stroke plane angle, wake-induced velocity, and mechanical and metabolic power expenditures when compared with flight at the control height of 8 R . By contrast, stroke plane angle relative to horizontal, wingbeat amplitude and wingbeat frequency were unexpectedly independent of height from ground. Qualitative smoke visualizations suggest that each wing generates a vortex ring during both down- and upstroke. These rings expand upon reaching the ground and present a complex turbulent interaction below the bird's body. Nonetheless, hovering near surfaces results in substantial energetic benefits for hummingbirds, and by inference for all volant taxa that either feed at flowers or otherwise fly close to plant or other surfaces.


Author(s):  
Bowen Yan ◽  
Yangjin Yuan ◽  
Dalong Li ◽  
Ke Li ◽  
Qingshan Yang ◽  
...  

The semi-periodic vortex-shedding phenomenon caused by flow separation at the windward corners of a rectangular cylinder would result in significant vortex-induced vibrations (VIVs). Based on the aeroelastic experiment of a rectangular cylinder with side ratio of 1.5:1, 2-dimensional (2D) and 2.5-dimensional (2.5D) numerical simulations of the VIV of a rectangular cylinder were comprehensively validated. The mechanism of VIV of the rectangular cylinder was in detail discussed in terms of vortex-induced forces, aeroelastic response, work analysis, aerodynamic damping ratio and flow visualization. The outcomes showed that the numerical results of aeroelastic displacement in the cross-wind direction and the vortex-shedding procedure around the rectangular cylinder were in general consistence with the experimental results by 2.5D numerical simulation. In both simulations, the phase difference between the lift and displacement response increased with the reduced wind speed and the vortex-induced resonance (VIR) disappeared at the phase difference of approximately 180∘. The work done by lift force shows a close relationship with vibration amplitudes at different reduced wind speeds. In 2.5D simulations, the lift force of the rectangular cylinder under different wind speeds would be affected by the presence of small-scale vortices in the turbulence flow field. Similarly, the phase difference between lift force and displacement response was not a constant with the same upstream wind speed. Aerodynamic damping identified from the VIV was mainly dependent on the reduced wind speed and negative damping ratios were revealed at the lock-in regime, which also greatly influenced the probability density function (PDF) of wind-induced displacement.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1202 ◽  
Author(s):  
Ingo Doench ◽  
Maria Torres-Ramos ◽  
Alexandra Montembault ◽  
Paula Nunes de Oliveira ◽  
Celia Halimi ◽  
...  

The development of non-cellularized injectable suspensions of viscous chitosan (CHI) solutions (1.7–3.3% (w/w)), filled with cellulose nanofibers (CNF) (0.02–0.6% (w/w)) of the type nanofibrillated cellulose, was proposed for viscosupplementation of the intervertebral disc nucleus pulposus tissue. The achievement of CNF/CHI formulations which can gel in situ at the disc injection site constitutes a minimally-invasive approach to restore damaged/degenerated discs. We studied physico-chemical aspects of the sol and gel states of the CNF/CHI formulations, including the rheological behavior in relation to injectability (sol state) and fiber mechanical reinforcement (gel state). CNF-CHI interactions could be evidenced by a double flow behavior due to the relaxation of the CHI polymer chains and those interacting with the CNFs. At high shear rates resembling the injection conditions with needles commonly used in surgical treatments, both the reference CHI viscous solutions and those filled with CNFs exhibited similar rheological behavior. The neutralization of the flowing and weakly acidic CNF/CHI suspensions yielded composite hydrogels in which the nanofibers reinforced the CHI matrix. We performed evaluations in relation to the biomedical application, such as the effect of the intradiscal injection of the CNF/CHI formulation in pig and rabbit spine models on disc biomechanics. We showed that the injectable formulations became hydrogels in situ after intradiscal gelation, due to CHI neutralization occurring in contact with the body fluids. No leakage of the injectate through the injection canal was observed and the gelled formulation restored the disc height and loss of mechanical properties, which is commonly related to disc degeneration.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


2007 ◽  
Vol 51 (02) ◽  
pp. 182-186
Author(s):  
Tracie J. Barber

The accurate prediction of ground effect aerodynamics is an important aspect of wing-in-ground (WIG) effect vehicle design. When WIG vehicles operate over water, the deformation of the nonrigid surface beneath the body may affect the aerodynamic performance of the craft. The likely surface deformation has been considered from a theoretical and numerical position. Both two-dimensional and three-dimensional cases have been considered, and results show that any deformation occurring on the water surface is likely to be caused by the wing tip vortices rather than an increased pressure distribution beneath the wing.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Chao Xia ◽  
Xizhuang Shan ◽  
Zhigang Yang

The influence of ground effect on the wake of a high-speed train (HST) is investigated by an improved delayed detached-eddy simulation. Aerodynamic forces, the time-averaged and instantaneous flow structure of the wake are explored for both the stationary ground and the moving ground. It shows that the lift force of the trailing car is overestimated, and the fluctuation of the lift and side force is much greater under the stationary ground, especially for the side force. The coexistence of multiscale vortex structures can be observed in the wake along with vortex stretching and pairing. Furthermore, the out-of-phase vortex shedding and oscillation of the longitudinal vortex pair in the wake are identified for both ground configurations. However, the dominant Strouhal number of the vortex shedding for the stationary and moving ground is 0.196 and 0.111, respectively, due to the different vorticity accumulation beneath the train. A conceptual model is proposed to interpret the mechanism of the interaction between the longitudinal vortex pair and the ground. Under the stationary ground, the vortex pair embedded in a turbulent boundary layer causes more rapid diffusion of the vorticity, leading to more intensive oscillation of the longitudinal vortex pair.


Author(s):  
Nadeem Ahmed Sheikh ◽  
M. Afzaal Malik ◽  
Arshad Hussain Qureshi ◽  
M. Anwar Khan ◽  
Shahab Khushnood

Flow past a blunt body, such as a circular cylinder, usually experiences boundary layer separation and very strong flow oscillations in the wake region behind the body at a discrete frequency that is correlated to the Reynolds number of the flow. The periodic nature of the vortex shedding phenomenon can sometimes lead to unwanted structural vibrations. The effect of vibrating instability of a single cylinder is investigated in a uniform flow using the power of computational methods. Fluid structure coupling procedure predicts the fluid forces responsible for structural vibrations. An implicit approach to the solution of the unsteady two-dimensional Navier-Stokes equations is used for computation of flow parameters. Calculations are performed in parallel using a domain re-meshing/deforming technique with efficient communication requirements. Results for the unsteady shedding flow behind a circular cylinder are presented with experimental comparisons, showing the feasibility of accurate, efficient, time-dependent estimation of shedding frequency and resulting vibrations.


Author(s):  
Micha Premkumar Thomai ◽  
Lasoodawanki Kharsati ◽  
Nakandhrakumar Rama Samy ◽  
Seralathan Sivamani ◽  
Hariram Venkatesan

Abstract Vortex-induced vibration is one of the predominant fundamental concepts for forced oscillation which attracts considerable practical engineering application for energy conversion. In this work, an oscillation of a mast arising as a result of wind force is utilized for energy conversion. The paradigm for energy conversion from vortex-induced vibration in the mast is the bladeless wind turbine. It consists of a rigid mass known as a mast, fixed in the spring of stiffness (k) and allowed to oscillate along the direction of the flow. In this work, four different types of mast have been fabricated and tested. The first is uniform tapered hollow conical mast (MAST1), the cross-section of the second is uniform tapered plus symbol (MAST2), the third is uniform tapered inversed plus symbol (MAST3) and the fourth is uniform tapered simple rectangular cross-section (MAST4). All the masts were fabricated using fiber carbon. The experiments were conducted in a versatile small wind turbine testing facility of Hindustan Institute of Technology and Science, Chennai. This test facility contained an open jet wind tunnel with variable frequency drive and other measuring instruments. The vibration sensor was located in the mast where it experienced a large oscillation in a free stream. In this experiment, an increase in wind velocity led to a terrible change in the amplitude of vibration. A vigorous oscillation was experienced in this mast at this critical frequency, when the natural frequency of the mast was synchronized with the frequency of the vortex shedding and the frequency of the oscillation of the mast. The total force in this oscillation was a summation of the body force due to the mass of the mast and vorticity force that is mainly which was the result of the shedding of the vortices. In this work, extensive studies have been carried out for Reynolds number ranging from 2.5 × 105 to 5.0 × 105. The mast length to diameter ratio of 13 was exposed to various speeds of wind and response was measured. The occurrence of the maximum oscillation in a simple rectangular mast was seen where vortex shedding due to the bluff body was large for constant mass and spring stiffness. The frequency of the oscillation at maximum amplitude of the rectangular cross-section mast was equal to the natural frequency, due to vortices shedding at critical velocity. This demonstrated the appropriateness of the simple rectangular cross-section for harnessing the low rated wind energy and its suitability for renewable energy conversion in the small bladeless wind turbine.


Author(s):  
Ivana Martić ◽  
Nastia Degiuli ◽  
Šime Malenica ◽  
Andrea Farkas

Numerical problems related to the convergence of the classical panel methods which are employed for the diffraction-radiation simulations are discussed. It is well known that, for the panel methods, the convergence issues are not exclusively related to the physical parameters (wave length, body shape, draught ...) but also to the one purely numerical phenomenon which occurs when the Boundary Integral Equation Method (BIEM) based on the use of Kelvin (wave) type Green’s function is used. Indeed, due to the fact that the Green’s function satisfies the free surface condition in the whole fluid domain below z = 0, the numerical solution is polluted, at some particular frequencies, by the solution of the unphysical problem inside the body. This phenomenon which is purely numerical, is known as the problem of irregular frequencies. From practical point of view, it is not always easy to distinguish if the irregularities in the final solution are coming, from the body mesh which is not fine enough, from the physical resonance of the system, from the problem of irregular frequencies or from something else!? In this paper the authors discuss these issues in the context of the evaluation of the seakeeping behavior of one typical FPSO (Floating Production Storage and Offloading). Both the linear (first order) as well as the second order quantities are of concern and the different methods for the elimination of the irregular frequencies are discussed. Special attention is given to the calculations of the different physical quantities at very high frequencies. The numerical tool used within this research is the Bureau Veritas numerical code HYDROSTAR which is based on the panel method with singularities of constant strength.


Sign in / Sign up

Export Citation Format

Share Document