Direct simulations of a rough-wall channel flow

2007 ◽  
Vol 571 ◽  
pp. 235-263 ◽  
Author(s):  
TOMOAKI IKEDA ◽  
PAUL A. DURBIN

In this study, we performed simulations of turbulent flow over rectangular ribs transversely mounted on one side of a plane in a channel, with the other side being smooth. The separation between ribs is large enough to avoid forming stable vortices in the spacing, which exhibits k-type, or sand-grain roughness. The Reynolds number Reτ of our representative direct numerical simulation case is 460 based on the smooth-wall friction velocity and the channel half-width. The roughness height h is estimated as 110 wall units based on the rough-wall friction velocity. The velocity profile and kinetic energy budget verify the presence of an equilibrium, logarithmic layer at y≳2h. In the roughness sublayer, however, a significant turbulent energy flux was observed. A high-energy region is formed by the irregular motions just above the roughness. Visualizations of vortical streaks, disrupted in all three directions in the roughness sublayer, indicate that the three-dimensional flow structure of sand-grain roughness is replicated by the two-dimensional roughness, and that this vortical structure is responsible for the high energy production. The difference in turbulence structure between smooth- and rough-wall layers can also be seen in other flow properties, such as anisotropy and turbulence length scales.

2016 ◽  
Vol 804 ◽  
pp. 130-161 ◽  
Author(s):  
M. MacDonald ◽  
L. Chan ◽  
D. Chung ◽  
N. Hutchins ◽  
A. Ooi

We investigate rough-wall turbulent flows through direct numerical simulations of flow over three-dimensional transitionally rough sinusoidal surfaces. The roughness Reynolds number is fixed at $k^{+}=10$, where $k$ is the sinusoidal semi-amplitude, and the sinusoidal wavelength is varied, resulting in the roughness solidity $\unicode[STIX]{x1D6EC}$ (frontal area divided by plan area) ranging from 0.05 to 0.54. The high cost of resolving both the flow around the dense roughness elements and the bulk flow is circumvented by the use of the minimal-span channel technique, recently demonstrated by Chung et al. (J. Fluid Mech., vol. 773, 2015, pp. 418–431) to accurately determine the Hama roughness function, $\unicode[STIX]{x0394}U^{+}$. Good agreement of the second-order statistics in the near-wall roughness-affected region between minimal- and full-span rough-wall channels is observed. In the sparse regime of roughness ($\unicode[STIX]{x1D6EC}\lesssim 0.15$) the roughness function increases with increasing solidity, while in the dense regime the roughness function decreases with increasing solidity. It was found that the dense regime begins when $\unicode[STIX]{x1D6EC}\gtrsim 0.15{-}0.18$, in agreement with the literature. A model is proposed for the limit of $\unicode[STIX]{x1D6EC}\rightarrow \infty$, which is a smooth wall located at the crest of the roughness elements. This model assists with interpreting the asymptotic behaviour of the roughness, and the rough-wall data presented in this paper show that the near-wall flow is tending towards this modelled limit. The peak streamwise turbulence intensity, which is associated with the turbulent near-wall cycle, is seen to move further away from the wall with increasing solidity. In the sparse regime, increasing $\unicode[STIX]{x1D6EC}$ reduces the streamwise turbulent energy associated with the near-wall cycle, while increasing $\unicode[STIX]{x1D6EC}$ in the dense regime increases turbulent energy. An analysis of the difference of the integrated mean momentum balance between smooth- and rough-wall flows reveals that the roughness function decreases in the dense regime due to a reduction in the Reynolds shear stress. This is predominantly due to the near-wall cycle being pushed away from the roughness elements, which leads to a reduction in turbulent energy in the region previously occupied by these events.


1981 ◽  
Vol 110 ◽  
pp. 171-194 ◽  
Author(s):  
C. Chandrsuda ◽  
P. Bradshaw

Hot-wire measurements of second- and third-order mean products of velocity fluctuations have been made in the flow behind a backward-facing step with a thin, laminar boundary layer at the top of the step. Measurements extend to a distance of about 12 step heights downstream of the step, and include parts of the recirculating-flow region: approximate limits of validity of hot-wire results are given. The Reynolds number based on step height is about 105, the mixing layer being fully turbulent (fully three-dimensional eddies) well before reattachment, and fairly close to self-preservation in contrast to the results of some previous workers. Rapid changes in turbulence quantities occur in the reattachment region: Reynolds shear stress and triple products decrease spectacularly, mainly because of the confinement of the large eddies by the solid surface. The terms in the turbulent energy and shear stress balances also change rapidly but are still far from the self-preserving boundary-layer state even at the end of the measurement region.


2014 ◽  
Vol 18 (8) ◽  
pp. 3079-3093 ◽  
Author(s):  
M. P. Curtarelli ◽  
E. H. Alcântara ◽  
C. D. Rennó ◽  
J. L. Stech

Abstract. We investigated the influence of wintertime cold front activity on the physical processes within a large tropical reservoir located in Brazil. The period chosen for this study consisted of 49 days between 28 April 2010 and 15 July 2010. This period was defined based on information from the Brazilian Center for Weather Forecasting and Climate Studies (CPTEC), data collected in situ and the interpretation of remotely sensed images. To better understand the governing processes that drive changes in the heat balance, differential cooling and mixing dynamics, a simulation was performed that utilized a three-dimensional hydrodynamic model enforced with in situ and remote sensing data. The results showed that during a cold front passage over the reservoir, the sensible and latent heat fluxes were enhanced by approximately 77 and 16%, respectively. The reservoir's daily averaged heat loss was up to 167% higher on the days with cold front activity than on the days without activity. The cold front passage also intensified the differential cooling process; in some cases the difference between the water temperature of the littoral and pelagic zones reached up to 8 °C. The occurrence of cold front passages impacted the diurnal mixed layer (DML), by increasing the turbulent energy input (∼54%) and the DML depth (∼41%). Our results indicate that the cold front events are one of the main meteorological disturbances driving the physical processes within hydroelectric reservoirs located in tropical South America during the wintertime. Hence, cold front activity over these aquatic systems has several implications for water quality and reservoir management in Brazil.


1991 ◽  
Vol 44 (1) ◽  
pp. 1-25 ◽  
Author(s):  
M. R. Raupach ◽  
R. A. Antonia ◽  
S. Rajagopalan

This review considers theoretical and experimental knowledge of rough-wall turbulent boundary layers, drawing from both laboratory and atmospheric data. The former apply mainly to the region above the roughness sublayer (in which the roughness has a direct dynamical influence) whereas the latter resolve the structure of the roughness sublayer in some detail. Topics considered include the drag properties of rough surfaces as functions of the roughness geometry, the mean and turbulent velocity fields above the roughness sublayer, the properties of the flow close to and within the roughness canopy, and the nature of the organized motion in rough-wall boundary layers. Overall, there is strong support for the hypothesis of wall similarity: At sufficiently high Reynolds numbers, rough-wall and smooth-wall boundary layers have the same turbulence structure above the roughness (or viscous) sublayer, scaling with height, boundary-layer thickness, and friction velocity.


Author(s):  
Siddharth Talapatra ◽  
Joseph Katz

Microscopic digital Holographic PIV is used to measure the 3D velocity distributions in the roughness sublayer of a turbulent boundary layer over a rough wall. The sample volume extends from the surface, including the space between the tightly packed, 0.45 mm high, pyramidal roughness elements, up to about 5 roughness heights away from the wall. To facilitate observations though a rough surface, experiments are performed in a facility containing fluid that has the same optical refractive index as the acrylic rough walls. Magnified in line holograms are recorded on a 4864×3248 pixel camera at a resolution of 0.67μm/pixel. The flow field is seeded with 2μm silver coated glass particles, which are injected upstream of the same volume. A multiple-step particle tracking procedure is used for matching the particle pairs. In recently obtained data, we have typically matched ∼5000 particle images per hologram pair. The resulting unstructured 3D vectors are projected onto a uniform grid with spacing of 60 μm in all three directions in a 3.2×1.8×1.8 mm sample volume. The paper provides sample data showing that the flow in the roughness sublayer is dominated by slightly inclined, quasi-streamwise vortices whose coherence is particularly evident close to the top of the roughness elements.


2012 ◽  
Vol 711 ◽  
pp. 161-170 ◽  
Author(s):  
Siddharth Talapatra ◽  
Joseph Katz

AbstractMicroscopic holographic PIV performed in an optically index-matched facility resolves the three-dimensional flow in the inner part of a turbulent channel flow over a rough wall at Reynolds number ${\mathit{Re}}_{\tau } = 3520$. The roughness consists of uniformly distributed pyramids with normalized height of ${ k}_{s}^{+ } = 1. 5{k}^{+ } = 97$. Distributions of mean flow and Reynolds stresses agree with two-dimensional PIV data except very close to the wall (${\lt }0. 7k$) owing to the higher resolution of holography. Instantaneous realizations reveal that the roughness sublayer is flooded by low-lying spanwise and groove-parallel vortical structures, as well as quasi-streamwise vortices, some quite powerful, that rise at sharp angles. Conditional sampling and linear stochastic estimation (LSE) reveal that the prevalent flow phenomenon in the roughness sublayer consists of interacting U-shaped vortices, conjectured in Hong et al. (J. Fluid Mech., 2012, doi:10.1017/jfm.2012.403). Their low-lying base with primarily spanwise vorticity is located above the pyramid ridgeline, and their inclined quasi-streamwise legs extend between ridgelines. These structures form as spanwise vorticity rolls up in a low-speed region above the pyramid’s forward face, and is stretched axially by the higher-speed flow between ridgelines. Ejection induced by interactions among legs of vortices generated by neighbouring pyramids appears to be the mechanism that lifts the quasi-streamwise vortex legs and aligns them preferentially at angles of $54\textdegree \text{{\ndash}} 63\textdegree $ to the streamwise direction.


Author(s):  
Aung Thuyein Win ◽  
Shinsuke Mochizuki ◽  
Takatsugu Kameda

Hot wire measurement is carried in fully developed turbulent pipe flow which introducing the rough wall sections (containing d- and k-type roughness alternatively) and emphasis on the statistical properties of turbulence for each flows. Sufficient pipe length is provided to ensure for fully recovery after disturbed by rough wall. On comparison, the major differences between d- and k-type rough wall effect could be found in early response region (x/D = 0.1 to 4). The violent ejection from the k-type roughness is found to the large effect to the main flow which turns into larger additional turbulent energy production. The changing of wall friction could increase the local shear stress which leads to the formation of stress bore but depends on the amount of changes. This stress bore is found to propagate from the vicinity of the wall to the pipe center which does not depend on type or length of roughness. The effectiveness of rough wall can also be found in the power spectra of streamwise component. The energy containing region agrees to both undisturbed and disturbed flow but shifting in power spectra appears which primarily depends on strength of disturbances.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


1983 ◽  
Vol 218 (1210) ◽  
pp. 119-126 ◽  

The number of iron atoms in the dimeric iron-containing superoxide dismutase from Pseudomonas ovalis and their atomic positions have been determined directly from anomalous scattering measurements on crystals of the native enzyme. To resolve the long-standing question of the total amount of iron per molecule for this class of dismutase, the occupancy of each site was refined against the measured Bijvoet differences. The enzyme is a symmetrical dimer with one iron site in each subunit. The iron position is 9 ņ from the intersubunit interface. The total iron content of the dimer is 1.2±0.2 moles per mole of protein. This is divided between the subunits in the ratio 0.65:0.55; the difference between them is probably not significant. Since each subunit contains, on average, slightly more than half an iron atom we conclude that the normal state of this enzyme is two iron atoms per dimer but that some of the metal is lost during purification of the protein. Although the crystals are obviously a mixture of holo- and apo-enzymes, the 2.9 Å electron density map is uniformly clean, even at the iron site. We conclude that the three-dimensional structures of the iron-bound enzyme and the apoenzyme are identical.


Sign in / Sign up

Export Citation Format

Share Document