Wake states of a tethered cylinder

2007 ◽  
Vol 592 ◽  
pp. 1-21 ◽  
Author(s):  
J. CARBERRY ◽  
J. SHERIDAN

This paper describes an experimental investigation of a buoyant, m*<1, tethered cylinder which is free to move in an arc about its pivot points. The response of the cylinder, in particular its layover angle and flow-induced motion, is considered for a range of flow velocities and mass ratios. At pertinent parameters, the flow fields were also measured using particle image velocimetry (PIV). At lower mass ratios, 0.54≤m*≤0.72, two distinct states are observed, the low-amplitude and upper states. The transition from the low-amplitude state to the upper state is characterized by abrupt jumps in the amplitude of oscillation, the mean tether angle and the drag coefficient as well as distinct changes in the cylinder's wake. At higher mass ratios, the jump does not occur; however, as m* approaches unity at low flow velocities the cylinder's motion is more periodic than that observed at lower m*. The flow fields indicate that the low-amplitude state exhibits a 2S Kármán wake. The wake of the upper state has long shear layers extending well across the wake centreline, is not fully symmetric and is often consistent with either the 2P or P+S shedding modes. There is a collapse of the response data, in particular an excellent collapse of the mean layover angle, when the response parameters are plotted against the buoyancy Froude number, Frbuoyancy=U/((1-m*) gD)0.5. When the data collapses, the two states described above are clearly delineated.

Author(s):  
Deb Banerjee ◽  
Ahmet Selamet ◽  
Rick Dehner ◽  
Keith Miazgowicz

Abstract Particle Image Velocimetry has become a desirable tool to investigate turbulent flow fields in different engineering applications, including flames, combustion engines, and turbomachinery. The convergence characteristics of turbulent statistics of these flow fields are of prime importance since they help with the number of images (temporally uncorrelated) to be captured in order for the results to converge to a certain tolerance or with the assessment of the uncertainty of the measurements for a given number of images. The present work employs Stereoscopic Particle Image Velocimetry to examine the turbulent flow field at the inlet of an automotive turbocharger compressor without any recirculating channel. Optical measurements were conducted at five different mass flow rates spanning from choke to surge at a corrected rotational speed of 80 krpm. The velocity fields thus obtained were used to analyze the convergence of the mean (first statistical moment) and variance (second statistical moment) at different operating conditions. The convergence of the mean at a particular location in the flow field depends on the local coefficient of variation (COV). The number of required images for the mean to converge to a particular tolerance was also found to follow roughly a linear trend with respect to COV. While the convergence of the variance, on the other hand, did not appear to show any direct dependence on the coefficient of variation, it takes significantly more images than the mean to converge to the same level of tolerance.


2021 ◽  
Vol 13 (14) ◽  
pp. 2661
Author(s):  
Wen-Cheng Liu ◽  
Chien-Hsing Lu ◽  
Wei-Che Huang

The accuracy of river velocity measurements plays an important role in the effective management of water resources. Various methods have been developed to measure river velocity. Currently, image-based techniques provide a promising approach to avoid physical contact with targeted water bodies by researchers. In this study, measured surface velocities collected under low flow and high flow conditions in the Houlong River, Taiwan, using large-scale particle image velocimetry (LSPIV) captured by an unmanned aerial vehicle (UAV) and a terrestrial fixed station were analyzed and compared. Under low flow conditions, the mean absolute errors of the measured surface velocities using LSPIV from a UAV with shooting heights of 9, 12, and 15 m fell within 0.055 ± 0.015 m/s, which was lower than that obtained using LSPIV on video recorded from a terrestrial fixed station (i.e., 0.34 m/s). The mean absolute errors obtained using LSPIV derived from UAV aerial photography at a flight height of 12 m without seeding particles and with different seeding particle densities were slightly different, and fell within the range of 0.095 ± 0.025 m/s. Under high flow conditions, the mean absolute errors associated with using LSPIV derived from terrestrial fixed photography and LSPIV derived from a UAV with flight heights of 32, 62, and 112 m were 0.46 m/s and 0.49 m/s, 0.27 m, and 0.97 m/s, respectively. A UAV flight height of 62 m yielded the best measured surface velocity result. Moreover, we also demonstrated that the optimal appropriate interrogation area and image acquisition time interval using LSPIV with a UAV were 16 × 16 pixels and 1/8 s, respectively. These two parameters should be carefully adopted to accurately measure the surface velocity of rivers.


2004 ◽  
Vol 126 (5) ◽  
pp. 585-593 ◽  
Author(s):  
Pramote Hochareon ◽  
Keefe B. Manning ◽  
Arnold A. Fontaine ◽  
John M. Tarbell ◽  
Steven Deutsch

In order to bridge the gap of existing artificial heart technology to the diverse needs of the patient population, we have been investigating the viability of a scaled-down design of the current 70 cc Penn State artificial heart. The issues of clot formation and hemolysis may become magnified within a 50 cc chamber compared to the existing 70 cc one. Particle image velocimetry (PIV) was employed to map the entire 50 cc Penn State artificial heart chamber. Flow fields constructed from PIV data indicate a rotational flow pattern that provides washout during diastole. In addition, shear rate maps were constructed for the inner walls of the heart chamber. The lateral walls of the mitral and aortic ports experience high shear rates while the upper and bottom walls undergo low shear rates, with sufficiently long exposure times to potentially induce platelet activation or thrombus formation. In this study, we have demonstrated that PIV may adequately map the flow fields accurately in a reasonable amount of time. Therefore, the potential exists of employing PIV as a design tool.


2018 ◽  
Vol 841 ◽  
pp. 1-27 ◽  
Author(s):  
Leon Vanstone ◽  
Mustafa Nail Musta ◽  
Serdar Seckin ◽  
Noel Clemens

This study investigates the mean flow structure of two shock-wave boundary-layer interactions generated by moderately swept compression ramps in a Mach 2 flow. The ramps have a compression angle of either $19^{\circ }$ or $22.5^{\circ }$ and a sweep angle of $30^{\circ }$. The primary diagnostic methods used for this study are surface-streakline flow visualization and particle image velocimetry. The shock-wave boundary-layer interactions are shown to be quasi-conical, with the intermittent region, separation line and reattachment line all scaling in a self-similar manner outside of the inception region. This is one of the first studies to investigate the flow field of a swept ramp using particle image velocimetry, allowing more sensitive measurements of the velocity flow field than previously possible. It is observed that the streamwise velocity component outside of the separated flow reaches the quasi-conical state at the same time as the bulk surface flow features. However, the streamwise and cross-stream components within the separated flow take longer to recover to the quasi-conical state, which indicates that the inception region for these low-magnitude velocity components is actually larger than was previously assumed. Specific scaling laws reported previously in the literature are also investigated and the results of this study are shown to scale similarly to these related interactions. Certain limiting cases of the scaling laws are explored that have potential implications for the interpretation of cylindrical and quasi-conical scaling.


Author(s):  
Lu Wang ◽  
Jia-Qi Bao ◽  
Tong-Zhou Wei ◽  
Wei-Hua Cai ◽  
Feng-Chen Li

The influences of drag-reducing surfactant additives on the characteristics of a turbulent flow over a planar sudden expansion with expansion ration R = D/d = 3 and aspect ratio A = w/h = 30 were experimentally investigated by a 2D-2C (two dimensional-two component) particle image velocimetry (PIV) system. The 2D-2C velocity fields in the streamwise-wall-normal planes (x-y planes) at three spanwise locations are measured for the flows of water and 50ppm aqueous solution of CTAC/NaSal (CTAC: cetyltrimethyl ammonium chloride; NaSal: sodium salicylate) under the Reynolds number of 1.85 × 104. From the streamline in the x-y plane, it is observed that the reattachment lengths of the vortices in CTAC/NaSal solution are longer. Then the mean streamwise velocity fields and the apparent flow rate at three spanwise locations show that the flow fields in the other two x-y planes are practically symmetrical about the x-y centreplane in CTAC/NaSal solution, as compared with that in water flow. Finally, it is perceived that the Reynolds shear stress for three spanwise locations in CTAC/NaSal solution are obviously decreased.


2012 ◽  
Vol 9 (77) ◽  
pp. 3378-3386 ◽  
Author(s):  
Richard J. Bomphrey ◽  
Per Henningsson ◽  
Dirk Michaelis ◽  
David Hollis

Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.


2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Chunlei Shao ◽  
Jianfeng Zhou ◽  
Boqin Gu ◽  
Wenjie Cheng

Particle image velocimetry (PIV) technology was used to study steady and unsteady internal flow fields in a molten salt pump under both internal and external synchronization modes. The velocity fields in the suction chamber, impeller passage and volute were analyzed at different flow rates. The velocity distribution uniformity, velocity weighted average divergent flow angle, and circumferential component of absolute velocity were calculated on the basis of the obtained flow fields. The research is meaningful to the development of molten salt pumps, and the experimental method serves as a reference to similar rotating fluid machinery.


2007 ◽  
Vol 133 (6) ◽  
pp. 665-676 ◽  
Author(s):  
Dong-Guan Seol ◽  
Tirtharaj Bhaumik ◽  
Christian Bergmann ◽  
Scott A. Socolofsky

Sign in / Sign up

Export Citation Format

Share Document