Viscous effects on wave generation by strong winds

2008 ◽  
Vol 597 ◽  
pp. 343-369 ◽  
Author(s):  
A. ZEISEL ◽  
M. STIASSNIE ◽  
Y. AGNON

This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one.

1982 ◽  
Vol 123 ◽  
pp. 425-442 ◽  
Author(s):  
H. Mitsuyasu ◽  
T. Honda

Spatial growth of mechanically generated water waves under the action of wind has been measured in a laboratory wind-wave flume both for pure water and for water containing a surfactant (sodium lauryl sulphate, concentration 2.6 × 10−2%). I n the latter case, no wind waves develop on the surface of the mechanically generated waves as well as on the still water surface for wind speeds up to U10≈ 15 m/s, where U10 is the wind velocity at the height Z = 10 m. Therefore we can study the wind-induced growth of monochromatic waves without the effects of co-existing short wind waves. The mechanically generated waves grew exponentially under the action of the wind, with fetch in both cases. The measured growth rate β for the pure water can be fitted by β/f = 0.34(U*/C)2 0.1 [lsime ] U*/C [lsime ] 1.0, where f is the frequency of the waves, C is the corresponding phase velocity, and U, is the friction velocity obtained from vertical wind profiles. The effect of the wave steepness H/L on the dimensionless growth rate β/f is not clear, but seems to be small. For water containing the surfactant, the measured growth rate is smaller than that for pure water, but the friction velocity of the wind is also small, and the above relation between β/f and U*/C holds approximately if the measured friction velocity U* is used for the relation.


2000 ◽  
Vol 415 ◽  
pp. 155-174 ◽  
Author(s):  
JAN F. MEIRINK ◽  
VLADIMIR K. MAKIN

In studies of the turbulent air flow over water waves it is usually assumed that the effect of viscosity near the water surface is negligible, i.e. the Reynolds number, Re = u∗λ/v, is considered to be high. However, for short waves or low wind speeds this assumption is not valid. Therefore, a second-order turbulence closure that takes into account viscous effects is used to simulate the air flow. The model shows reasonable agreement with laboratory measurements of wave-induced velocity profiles. Next, the dependence of the dimensionless energy flux from wind to waves, or growth rate, on Re is investigated. The growth rate of waves that are slow compared to the wind is found to increase strongly when Re decreases below 104, with a maximum around Re = 800. The numerical model predictions are in good agreement with analytical theories and laboratory observations. Results of the study are useful in field conditions for the short waves in the spectrum, which are particularly important for remote sensing applications.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2053
Author(s):  
Junsong Shi ◽  
Baohua Tan ◽  
Lvhua Luo ◽  
Zicong Li ◽  
Linjun Hong ◽  
...  

How to maximize the use of the genetic merits of the high-ranking boars (also called superior ones) is a considerable question in the pig breeding industry, considering the money and time spent on selection. Somatic cell nuclear transfer (SCNT) is one of the potential ways to answer the question, which can be applied to produce clones with genetic resources of superior boar for the production of commercial pigs. For practical application, it is essential to investigate whether the clones and their progeny keep behaving better than the “normal boars”, considering that in vitro culture and transfer manipulation would cause a series of harmful effects to the development of clones. In this study, 59,061 cloned embryos were transferred into 250 recipient sows to produce the clones of superior Pietrain boars. The growth performance of 12 clones and 36 non-clones and the semen quality of 19 clones and 28 non-clones were compared. The reproductive performance of 21 clones and 25 non-clones were also tested. Furthermore, we made a comparison in the growth performance between 466 progeny of the clones and 822 progeny of the non-clones. Our results showed that no significant difference in semen quality and reproductive performance was observed between the clones and the non-clones, although the clones grew slower and exhibited smaller body size than the non-clones. The F1 progeny of the clones showed a greater growth rate than the non-clones. Our results demonstrated through the large animal population showed that SCNT manipulation resulted in a low growth rate and small body size, but the clones could normally produce F1 progeny with excellent growth traits to bring more economic benefits. Therefore, SCNT could be effective in enlarging the merit genetics of the superior boars and increasing the economic benefits in pig reproduction and breeding.


2021 ◽  
Vol 379 ◽  
pp. 457-465
Author(s):  
Tiancheng Zhang ◽  
Quanle Zou ◽  
Zhiheng Cheng ◽  
Zihan Chen ◽  
Ying Liu ◽  
...  

Author(s):  
Yong Wang

The purpose of this study is to explore the stability and interaction between parental pressure and social research report, as well as the role of employment status and family income levels in this process. This study used a special study on Korean children (PSKC) 2–4 waves. Use t-test, correlation and autoregressive cross-delay modeling to analyze the data. The main findings of this study are: First, over time, parental pressure and mother’s social research report are consistent. Secondly, the pressure of motherhood and childcare has an obvious lagging effect on upbringing, and vice versa. Third, there is no significant difference between working mothers and non-working mothers in terms of the stability of working parents' pressure, social research report and social research report for children's pressure channels. However, parental pressure can only predict the social research report of working mothers. Fourth, there is no significant difference between the stability and interaction of these two structures in household income levels. In short, the results show that, over time, parental pressure is consistent with mother’s social research report. The results also show that there is a significant cross-lag effect between the mothers’ perceptions of mutual pressure analysis. In the process from parental pressure to social research report, I found the difference between working and non-working mothers. The advantage of this study is that the expected longitudinal design was adopted during infancy and the priority between the two structures can be considered. The results of this study can be used as a source of intervention plans to help parents withstand severe parenting pressure and lack of social research report.


1996 ◽  
Vol 308 ◽  
pp. 31-62 ◽  
Author(s):  
Chi-Hwa Wang ◽  
R. Jackson ◽  
S. Sundaresan

This paper presents a linear stability analysis of a rapidly sheared layer of granular material confined between two parallel solid plates. The form of the steady base-state solution depends on the nature of the interaction between the material and the bounding plates and three cases are considered, in which the boundaries act as sources or sinks of pseudo-thermal energy, or merely confine the material while leaving the velocity profile linear, as in unbounded shear. The stability analysis is conventional, though complicated, and the results are similar in all cases. For given physical properties of the particles and the bounding plates it is found that the condition of marginal stability depends only on the separation between the plates and the mean bulk density of the particulate material contained between them. The system is stable when the thickness of the layer is sufficiently small, but if the thickness is increased it becomes unstable, and initially the fastest growing mode is analogous to modes of the corresponding unbounded problem. However, with a further increase in thickness a new mode becomes dominant and this is of an unusual type, with no analogue in the case of unbounded shear. The growth rate of this mode passes through a maximum at a certain value of the thickness of the sheared layer, at which point it grows much faster than any mode that could be shared with the unbounded problem. The growth rate of the dominant mode also depends on the bulk density of the material, and is greatest when this is neither very large nor very small.


Sign in / Sign up

Export Citation Format

Share Document