Gravity currents with residual trapping

2008 ◽  
Vol 611 ◽  
pp. 35-60 ◽  
Author(s):  
M. A. HESSE ◽  
F. M. ORR ◽  
H. A. TCHELEPI

Motivated by geological carbon dioxide (CO2) storage, we present a vertical-equilibrium sharp-interface model for the migration of immiscible gravity currents with constant residual trapping in a two-dimensional confined aquifer. The residual acts as a loss term that reduces the current volume continuously. In the limit of a horizontal aquifer, the interface shape is self-similar at early and at late times. The spreading of the current and the decay of its volume are governed by power-laws. At early times the exponent of the scaling law is independent of the residual, but at late times it decreases with increasing loss. Owing to the self-similar nature of the current the volume does not become zero, and the current continues to spread. In the hyperbolic limit, the leading edge of the current is given by a rarefaction and the trailing edge by a shock. In the presence of residual trapping, the current volume is reduced to zero in finite time. Expressions for the up-dip migration distance and the final migration time are obtained. Comparison with numerical results shows that the hyperbolic limit is a good approximation for currents with large mobility ratios even far from the hyperbolic limit. In gently sloping aquifers, the current evolution is divided into an initial near-parabolic stage, with power-law decrease of volume, and a later near-hyperbolic stage, characterized by a rapid decay of the plume volume. Our results suggest that the efficient residual trapping in dipping aquifers may allow CO2 storage in aquifers lacking structural closure, if CO2 is injected far enough from the outcrop of the aquifer.

2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Bruce R. Sutherland ◽  
Kristen Cote ◽  
Youn Sub (Dominic) Hong ◽  
Luke Steverango ◽  
Chris Surma

2013 ◽  
Vol 20 (1) ◽  
pp. 121-130 ◽  
Author(s):  
A. Jackson ◽  
B. Turnbull ◽  
R. Munro

Abstract. Lobe and cleft patterns are frequently observed at the leading edge of gravity currents, including non-Boussinesq particle-laden currents such as powder snow avalanches. Despite the importance of the instability in driving air entrainment, little is known about its origin or the mechanisms behind its development. In this paper we seek to gain a better understanding of these mechanisms from a laboratory scale model of powder snow avalanches using lightweight granular material. The instability mechanisms in these flows appear to be a combination of those found in both homogeneous Boussinesq gravity currents and unsuspended granular flows, with the size of the granular particles playing a central role in determining the wavelength of the lobe and cleft pattern. When scaled by particle diameter a relationship between the Froude number and the wavelength of the lobe and cleft pattern is found, where the wavelength increases monotonically with the Froude number.


2016 ◽  
Vol 801 ◽  
pp. 65-90 ◽  
Author(s):  
Roiy Sayag ◽  
Jerome A. Neufeld

We study the propagation of viscous gravity currents over a thin porous substrate with finite capillary entry pressure. Near the origin, where the current is deep, propagation of the current coincides with leakage through the substrate. Near the nose of the current, where the current is thin and the fluid pressure is below the capillary entry pressure, drainage is absent. Consequently the flow can be characterised by the evolution of drainage and fluid fronts. We analyse this flow using numerical and analytical techniques combined with laboratory-scale experiments. At early times, we find that the position of both fronts evolve as $t^{1/2}$, similar to an axisymmetric gravity current on an impermeable substrate. At later times, the growing effect of drainage inhibits spreading, causing the drainage front to logarithmically approach a steady position. In contrast, the asymptotic propagation of the fluid front is quasi-self-similar, having identical structure to the solution of gravity currents on an impermeable substrate, only with slowly varying fluid flux. We benchmark these theoretical results with laboratory experiments that are consistent with our modelling assumption, but that also highlight the detailed dynamics of drainage inhibited by finite capillary pressure.


1966 ◽  
Vol 24 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Philip A. Sullivan

An analysis of the exact equations of the inviscid flow of a perfect gas over cusped concave bodies is described. The field is examined in the limit of infinite free-stream Mach numberM∞. The slope of the shock wave in a small region adjacent to the leading edge is strongly dependent onM∞, while much further downstream the shock-wave slope is controlled primarily by the body slope. Consequently the region near the leading edge introduces into the field downstream a thin layer of gas, adjacent to the body, where the entropy is much lower than that of the gas above it. This layer is so dense that the gas velocity along it is not appreciably slowed by the pressure gradient along the body. However, it is so thin that there is little pressure change across it.The well-known self-similar solutions to the hypersonic small-disturbance equations have previously only been used to study the flow on blunted slender convex surfaces. They are known to behave singularly at the body. It is shown that there is a region on concave power-law shapes where the self-similar solutions are the correct first approximation to the exact inviscid equations in the limitM∞→ ∞; and that, further, they predict the correct first-order surface pressure.Numerical results for surface pressure from the similar solutions are presented, and comparisons are made with certain approximate theories available for more general shapes. Pressure measurements taken on a cubic surface in the Imperial College gun tunnel are presented and compared with the theoretical distributions.


2015 ◽  
Vol 778 ◽  
pp. 669-690 ◽  
Author(s):  
Zhong Zheng ◽  
Sangwoo Shin ◽  
Howard A. Stone

We study the propagation of viscous gravity currents along a thin permeable substrate where slow vertical drainage is allowed from the boundary. In particular, we report the effect of this vertical fluid drainage on the second-kind self-similar solutions for the shape of the fluid–fluid interface in three contexts: (i) viscous axisymmetric gravity currents converging towards the centre of a cylindrical container; (ii) viscous gravity currents moving towards the origin in a horizontal Hele-Shaw channel with a power-law varying gap thickness in the horizontal direction; and (iii) viscous gravity currents propagating towards the origin of a porous medium with horizontal permeability and porosity gradients in power-law forms. For each of these cases with vertical leakage, we identify a regime diagram that characterizes whether the front reaches the origin or not; in particular, when the front does not reach the origin, we calculate the final location of the front. We have also conducted laboratory experiments with a cylindrical lock gate to generate a converging viscous gravity current where vertical fluid drainage is allowed from various perforated horizontal substrates. The time-dependent position of the propagating front is captured from the experiments, and the front position is found to agree well with the theoretical and numerical predictions when surface tension effects can be neglected.


2010 ◽  
Vol 24 (12n13) ◽  
pp. 1811-1822 ◽  
Author(s):  
Franz J. Wegner

The density of states of disordered systems in the Wigner–Dyson classes approaches some finite non-zero value at the mobility edge, whereas the density of states in systems of the chiral and Bogolubov-de Gennes classes shows a divergent or vanishing behavior in the band centre. Such types of behavior were classified as homogeneous and inhomogeneous fixed point ensembles within a real-space renormalization group approach. For the latter ensembles, the scaling law µ = dν-1 was derived for the power laws of the density of states ρ ∝ |E|µ and of the localization length ξ ∝ |E|-ν. This prediction from 1976 is checked against explicit results obtained meanwhile.


1990 ◽  
Vol 210 ◽  
pp. 155-182 ◽  
Author(s):  
Julio Gratton ◽  
Fernando Minotti

A theoretical model for the spreading of viscous gravity currents over a rigid horizontal surface is derived, based on a lubrication theory approximation. The complete family of self-similar solutions of the governing equations is investigated by means of a phase-plane formalism developed in analogy to that of gas dynamics. The currents are represented by integral curves in the plane of two phase variables, Z and V, which are related to the depth and the average horizontal velocity of the fluid. Each integral curve corresponds to a certain self-similar viscous gravity current satisfying a particular set of initial and/or boundary conditions, and is obtained by solving a first-order ordinary differential equation of the form dV/dZ = f(Z, V), where f is a rational function. All conceivable self-similar currents can thus be obtained. A detailed analysis of the properties of the integral curves is presented, and asymptotic formulae describing the behaviour of the physical quantities near the singularities of the phase plane corresponding to sources, sinks, and current fronts are given. The derivation of self-similar solutions from the formalism is illustrated by several examples which include, in addition to the similarity flows studied by other authors, many other novel ones such as the extension to viscous flows of the classical problem of the breaking of a dam, the flows over plates with borders, as well as others. A self-similar solution of the second kind describing the axisymmetric collapse of a current towards the origin is obtained. The scaling laws for these flows are derived. Steady flows and progressive wave solutions are also studied and their connection to self-similar flows is discussed. The mathematical analogy between viscous gravity currents and other physical phenomena such as nonlinear heat conduction, nonlinear diffusion, and ground water motion is commented on.


Sign in / Sign up

Export Citation Format

Share Document