The effects of flow stratification by non-cohesive sediment on transport in high-energy wave-driven flows

2008 ◽  
Vol 610 ◽  
pp. 43-67 ◽  
Author(s):  
DANIEL C. CONLEY ◽  
SILVIA FALCHETTI ◽  
IRIS P. LOHMANN ◽  
MAURIZIO BROCCHINI

The two-way effects of the time-varying suppression of turbulence by gradients in suspended sediment concentration have been investigated using a modified form of the Generalized Ocean Turbulence Model (GOTM). Field measurements of fluid velocities and sediment concentrations collected under high-energy conditions (mobility number ≈ 900) have been simulated both including and neglecting the feedback between sediment and turbulence. The results show that, when present, this feedback increases the wave-coherent component of transport relative to the mean component of transport, which can even change the direction of transport. Comparisons between measured and simulated time series of near-bed sediment concentrations show great coherence (0.95 correlation) and it is argued that the differences in net transport rates may be partially explained by the use of a uniform grain size in the simulations. It is seen that the effects of sediment stratification scale with orbital velocity divided by sediment setting velocity, um/ws, for all grain sizes.

2002 ◽  
Vol 465 ◽  
pp. 379-410 ◽  
Author(s):  
M. CABALLERIA ◽  
G. COCO ◽  
A. FALQUÉS ◽  
D. A. HUNTLEY

The formation and development of transverse and crescentic sand bars in the coastal marine environment has been investigated by means of a nonlinear numerical model based on the shallow-water equations and on a simplified sediment transport parameterization. By assuming normally approaching waves and a saturated surf zone, rhythmic patterns develop from a planar slope where random perturbations of small amplitude have been superimposed. Two types of bedforms appear: one is a crescentic bar pattern centred around the breakpoint and the other, herein modelled for the first time, is a transverse bar pattern. The feedback mechanism related to the formation and development of the patterns can be explained by coupling the water and sediment conservation equations. Basically, the waves stir up the sediment and keep it in suspension with a certain cross-shore distribution of depth-averaged concentration. Then, a current flowing with (against) the gradient of sediment concentration produces erosion (deposition). It is shown that inside the surf zone, these currents may occur due to the wave refraction and to the redistribution of wave breaking produced by the growing bedforms. Numerical simulations have been performed in order to understand the sensitivity of the pattern formation to the parameterization and to relate the hydro-morphodynamic input conditions to which of the patterns develops. It is suggested that crescentic bar growth would be favoured by high-energy conditions and fine sediment while transverse bars would grow for milder waves and coarser sediment. In intermediate conditions mixed patterns may occur.


Author(s):  
K. Izui ◽  
S. Furuno ◽  
H. Otsu ◽  
T. Nishida ◽  
H. Maeta

Anisotropy of damage productions in crystals due to high energy electron bombardment are caused from two different origins. One is an anisotropic displacement threshold energy, and the other is an anisotropic distribution of electron flux near the atomic rows in crystals due to the electron channeling effect. By the n-beam dynamical calculations for germanium and molybdenum we have shown that electron flux at the atomic positions are from ∽4 to ∽7 times larger than the mean incident flux for the principal zone axis directions of incident 1 MeV electron beams, and concluded that such a locally increased electron flux results in an enhanced damage production. The present paper reports the experimental evidence for the enhanced damage production due to the locally increased electron flux and also the results of measurements of the displacement threshold energies for the <100>,<110> and <111> directions in molybdenum crystals by using a high voltage electron microscope.


2021 ◽  
Vol 12 ◽  
pp. 215145932199776
Author(s):  
Adem Sahin ◽  
Anıl Agar ◽  
Deniz Gulabi ◽  
Cemil Erturk

Aim: To evaluate the surgical outcomes and complications of patients over 65 years of age, with unstable ankle fractures. Material and Method: The study included 111 patients (73F/38 M) operated on between January 2015 and February 2019 and followed up for a mean of 21.2 months (range, 6-62 months).Demographic characteristics, comorbidities, fracture type, and mechanisms of injury were evaluated. Relationships between postoperative complications and comorbidities were examined. In the postoperative functional evaluations, the AOFAS score was used and pre and postoperative mobilization (eg, use of assistive devices) was assessed. Results: The mean age of the patients was 70.5 ± 6.1 years (range, 65-90 years). The mechanism of trauma was low-energy trauma in 90.1% of the fractures and high-energy trauma in 9.9%. The fractures were formed with a SER injury (supination external rotation) in 83.7% of cases and bimalleolar fractures were seen most frequently (85/111, 76%).Complications developed in 16 (14.4%) patients and a second operation was performed in 11 (9.9%) patients with complications. Plate was removed and debridement was performed in 5 of 6 patients due to wound problems. Nonunion was developed in the medial malleolus in 4 patients. Revision surgery was performed because of implant irritation in 2 patients and early fixation loss in the medial malleolus fracture in one patient. Calcaneotibial arthrodesis was performed in 3 patients because of implant failure and ankle luxation associated with non-union. A correlation was determined between ASA score and DM and complications, but not with osteoporosis. The mean follow-up AOFAS score was 86.7 ± 12.5 (range, 36-100).A total of 94 (84.7%) patients could walk without assistance postoperatively and 92 (82.9%) were able to regain the preoperative level of mobilization. Conclusion: Although surgery can be considered an appropriate treatment option for ankle fractures in patients aged >65 years, care must be taken to prevent potential complications and the necessary precautions must be taken against correctable comorbidities.


Medicina ◽  
2021 ◽  
Vol 57 (8) ◽  
pp. 734
Author(s):  
Ivona Djordjevic ◽  
Dragoljub Zivanovic ◽  
Ivana Budic ◽  
Ana Kostic ◽  
Danijela Djeric

Background and objectives: For the last three decades, non-operative management (NOM) has been the standard in the treatment of clinically stable patients with blunt spleen injury, with a success rate of up to 95%. However, there are no prospective issues in the literature dealing with the incidence and type of splenic complications after NOM. Materials and methods: This study analyzed 76 pediatric patients, up to the age of 18, with blunt splenic injury who were treated non-operatively. All patients were included in a posttraumatic follow-up protocol with ultrasound examinations 4 and 12 weeks after injury. Results: The mean age of the children was 9.58 ± 3.97 years (range 1.98 to 17.75 years), with no statistically significant difference between the genders. The severity of the injury was determined according to the American Association for Surgery of Trauma (AAST) classification: 7 patients had grade I injuries (89.21%), 21 patients had grade II injuries (27.63%), 33 patients had grade III injuries (43.42%), and 15 patients had grade IV injuries (19.73%). The majority of the injuries were so-called high-energy ones, which were recorded in 45 patients (59.21%). According to a previously created posttraumatic follow-up protocol, complications were detected in 16 patients (21.05%). Hematomas had the highest incidence and were detected in 11 patients (14.47%), while pseudocysts were detected in 3 (3.94%), and a splenic abscess and pseudoaneurysm were detected in 1 patient (1.31%), respectively. The complications were in a direct correlation with injury grade: seven occurred in patients with grade IV injuries (9.21%), five occurred in children with grade III injuries (6.57%), three occurred in patients with grade II injuries (3.94%), and one occurred in a patient with a grade I injury (1.31%). Conclusion: Based on the severity of the spleen injury, it is difficult to predict the further course of developing complications, but complications are more common in high-grade injuries. The implementation of a follow-up ultrasound protocol is mandatory in all patients with NOM of spleen injuries for the early detection of potentially dangerous and fatal complications.


2021 ◽  
pp. 1-17
Author(s):  
Jef Vandenberghe ◽  
Xun Yang ◽  
Xianyan Wang ◽  
Shejiang Wang ◽  
Huayu Lu

Abstract This paper describes an assemblage of diverse floodplain facies of reworked loess (facies b, c) in a Middle Pleistocene monsoonal setting of the Hanzhong Basin, central China. The vertical and lateral sedimentary sequences show changing energy conditions. Apart from the highest energy in the channel facies (facies a), a relatively high energy floodplain environment (facies b) prevailed in waterlogged conditions, with small, laterally migrating (sub)channels. Facies b generally interfingers with aggrading horizontal sheets of overbank deposits in alluvial pools and swamps in a floodplain with much lower energy (facies c), in which phases of stability (soil formation) occasionally interrupted overbank deposition. Reworked loess forms the main part of the floodplain deposits. The paleosols are considered to have been formed under low hydrodynamic conditions in an interglacial environment. These interglacial conditions follow the commonly assumed glacial conditions of channel facies a. The sedimentary successions in the floodplain show a recurrent composition and cyclicity between wet and dry floodplain sedimentation terminated by stability with soil formation. The cyclic rhythm of stacked high- and low-energy floodplain sediments is attributed to varied intensity of different hydrodynamic flooding events that may have been due to changing monsoonal rainfall or simple intrinsic fluvial behavior.


Author(s):  
Jia-Rong Yeh ◽  
Chung-Kang Peng ◽  
Norden E. Huang

Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal’s complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.


2009 ◽  
Vol 60 (7) ◽  
pp. 1875-1883 ◽  
Author(s):  
M. Ahnert ◽  
J. Tränckner ◽  
N. Günther ◽  
S. Hoeft ◽  
P. Krebs

Two different approaches to increase the fraction of combined water treated in the wastewater treatment plant (WWTP) which would otherwise contribute to combined sewer overflows (CSO) are presented and compared based on modelling results with regard to their efficiencies during various rain events. The first option is to generally increase the WWTP inflow according to its actual capacity rather than pre-setting a maximum that applies to worst case loading. In the second option the WWTP inflow is also increased, however, the extra inflow of combined water is bypassing the activated sludge tank and directly discharged to the secondary clarifier. Both approaches have their advantages. For the simulated time series with various rain events, the reduction of total COD load from CSOs and WWTP effluent discharged to the receiving water was up to 20% for both approaches. The total ammonia load reduction was between 6% for the bypass and 11% for inflow increase. A combination of both approaches minimises the adverse effects and the overall emission to the receiving water.


1984 ◽  
Vol 32 (5) ◽  
pp. 495 ◽  
Author(s):  
BA Myers ◽  
TF Neales

Field observations of some parameters of the water relations of the two eucalypt species E. behriana and E. microcarpa in dry sclerophyll, mallee and woodland vegetation were made at three sites from 1980 to 1983. The mean ( n = 519) water potential measured at dawn (Ψdawn) was -3.07± 0.01 MPa and fluctuated seasonally with rainfall intensity over the range -2.0 ± 0, 1 to -4.4 ± 0.1 MPa ( n = 30). Both species behaved similarly and some osmotic adjustment took place. Mean leaf conductance (gs) varied between 0.151 ± 0.006 and 0.003 ± 0.001 mol m-2 s-1 . Maximum daily values of gs were linearly related to Ψdawn as it fluctuated seasonally. The slope of this linear regression was not significantly different from that relating these values of gs and Ψ, when both were measured concurrently. There were thus no indications of a distinction between the responses of gs to long- and short-term fluctuations of Ψ or of a threshold-type response of gs to Ψ. Field measurements indicated that gs was decreased at high values of vapour pressure difference (Δe). In laboratory studies with seedlings of the two species gs decreased from 0.5 to 0.1 mol m-2 s-I as Δe increased from 0.5 to 3.0 kPa. Leaf and canopy conductance were the predominant plant determinants of transpiration rate (Er) in this type of vegetation which has the capacity to restrict Et via the effect of water potential (Ψ) on gs and also by the response of gs to Δe. Some of the water relations parameters of E. behriana indicated that this species was better able to withstand drought than was E microcarpa.


2021 ◽  
Vol 91 (10) ◽  
pp. 1040-1066
Author(s):  
Thomas C. Neal ◽  
Christian M. Appendini ◽  
Eugene C. Rankey

ABSTRACT Although carbonate ramps are ubiquitous in the geologic record, the impacts of oceanographic processes on their facies patterns are less well constrained than with other carbonate geomorphic forms such as isolated carbonate platforms. To better understand the role of physical and chemical oceanographic forces on geomorphic and sedimentologic variability of ramps, this study examines in-situ field measurements, remote-sensing data, and hydrodynamic modeling of the nearshore inner ramp of the modern northeastern Yucatán Shelf, Mexico. The results reveal how sediment production and accumulation are influenced by the complex interactions of the physical, chemical, and biological processes on the ramp. Upwelled, cool, nutrient-rich waters are transported westward across the ramp and concentrated along the shoreline by cold fronts (Nortes), westerly regional currents, and longshore currents. This influx supports a mix of both heterozoan and photozoan fauna and flora in the nearshore realm. Geomorphically, the nearshore parts of this ramp system in the study area include lagoon, barrier island, and shoreface environments, influenced by the mixed-energy (wave and tidal) setting. Persistent trade winds, episodic tropical depressions, and winter storms generate waves that propagate onto the shoreface. Extensive shore-parallel sand bodies (beach ridges and subaqueous dune fields) of the high-energy, wave-dominated upper shoreface and foreshore are composed of fine to coarse skeletal sand, lack mud, and include highly abraded, broken and bored grains. The large shallow lagoon is mixed-energy: wave-dominated near the inlet, it transitions to tide-dominated in the more protected central and eastern regions. Lagoon sediment consists of Halimeda-rich muddy gravel and sand. Hydrodynamic forces are especially strong where bathymetry focuses water flow, as occurs along a promontory and at the lagoon inlet, and can form subaqueous dunes. Explicit comparison among numerical models of conceptual shorefaces in which variables are altered and isolated systematically demonstrates the influences of the winds, waves, tides, and currents on hydrodynamics across a broad spectrum of settings (e.g., increased tidal range, differing wind and wave conditions). Results quantify how sediment transport patterns are determined by wave height and direction relative to the shoreface, but tidal forces locally control geomorphic and sedimentologic character. Similarly, the physical oceanographic processes acting throughout the year (e.g., daily tides, episodic winter Nortes, and persistent easterly winds and waves) have more impact on geomorphology and sedimentology of comparable nearshore systems than intense, but infrequent, hurricanes. Overall, this study provides perspectives on how upwelling, nutrient levels, and hydrodynamics influence the varied sedimentologic and geomorphic character of the nearshore areas of this high-energy carbonate ramp system. These results also provide for more accurate and realistic conceptual models of the depositional variability for a spectrum of modern and ancient ramp systems.


Sign in / Sign up

Export Citation Format

Share Document