scholarly journals Self-organization mechanisms for the formation of nearshore crescentic and transverse sand bars

2002 ◽  
Vol 465 ◽  
pp. 379-410 ◽  
Author(s):  
M. CABALLERIA ◽  
G. COCO ◽  
A. FALQUÉS ◽  
D. A. HUNTLEY

The formation and development of transverse and crescentic sand bars in the coastal marine environment has been investigated by means of a nonlinear numerical model based on the shallow-water equations and on a simplified sediment transport parameterization. By assuming normally approaching waves and a saturated surf zone, rhythmic patterns develop from a planar slope where random perturbations of small amplitude have been superimposed. Two types of bedforms appear: one is a crescentic bar pattern centred around the breakpoint and the other, herein modelled for the first time, is a transverse bar pattern. The feedback mechanism related to the formation and development of the patterns can be explained by coupling the water and sediment conservation equations. Basically, the waves stir up the sediment and keep it in suspension with a certain cross-shore distribution of depth-averaged concentration. Then, a current flowing with (against) the gradient of sediment concentration produces erosion (deposition). It is shown that inside the surf zone, these currents may occur due to the wave refraction and to the redistribution of wave breaking produced by the growing bedforms. Numerical simulations have been performed in order to understand the sensitivity of the pattern formation to the parameterization and to relate the hydro-morphodynamic input conditions to which of the patterns develops. It is suggested that crescentic bar growth would be favoured by high-energy conditions and fine sediment while transverse bars would grow for milder waves and coarser sediment. In intermediate conditions mixed patterns may occur.

2021 ◽  
Vol 13 (10) ◽  
pp. 1874
Author(s):  
Isaac Rodríguez-Padilla ◽  
Bruno Castelle ◽  
Vincent Marieu ◽  
Philippe Bonneton ◽  
Arthur Mouragues ◽  
...  

This paper examines the potential of an optical flow video-based technique to estimate wave-filtered surface currents in the nearshore where wave-breaking induced foam is present. This approach uses the drifting foam, left after the passage of breaking waves, as a quasi-passive tracer and tracks it to estimate the surface water flow. The optical signature associated with sea-swell waves is first removed from the image sequence to avoid capturing propagating waves instead of the desired foam motion. Waves are removed by applying a temporal Fourier low-pass filter to each pixel of the image. The low-pass filtered images are then fed into an optical flow algorithm to estimate the foam displacement and to produce mean velocity fields (i.e., wave-filtered surface currents). We use one week of consecutive 1-Hz sampled frames collected during daylight hours from a single fixed camera located at La Petite Chambre d’Amour beach (Anglet, SW France) under high-energy conditions with significant wave height ranging from 0.8 to 3.3 m. Optical flow-computed velocities are compared against time-averaged in situ measurements retrieved from one current profiler installed on a submerged reef. The computed circulation patterns are also compared against surf-zone drifter trajectories under different field conditions. Optical flow time-averaged velocities show a good agreement with current profiler measurements: coefficient of determination (r2)= 0.5–0.8; root mean square error (RMSE) = 0.12–0.24 m/s; mean error (bias) =−0.09 to −0.17 m/s; regression slope =1±0.15; coherence2 = 0.4–0.6. Despite an underestimation of offshore-directed velocities under persistent wave breaking across the reef, the optical flow was able to correctly reproduce the mean flow patterns depicted by drifter trajectories. Such patterns include rip-cell circulation, dominant onshore-directed surface flow and energetic longshore current. Our study suggests that open-source optical flow algorithms are a promising technique for coastal imaging applications, particularly under high-energy wave conditions when in situ instrument deployment can be challenging.


1980 ◽  
Vol 1 (17) ◽  
pp. 65
Author(s):  
T.O. Sasaki ◽  
H. Igarashi ◽  
S. Harikai

Nearshore circulation on a partially rocky shore at Haranomachi Beach, Fukushima Prefecture, Japan has been studied in terms of field observations and numerical experiments for a low energy wave regime and with a physical experiment for a high energy wave regime. No significant distinctions were found in current velocity and rip current spacing between rocky and sandy beaches for the low energy wave regime, however the positions of rip currents were affected by wave refraction from the offshore exposed rocky bottom. On the other hand, since the surf zone bed is largely occupied by an exposed rocky floor for the high energy wave regime, the circulation exhibited fairly irregular patterns, so that a rip current becomes difficult to define, however the positions of inflow across the breaker line were found to be coincident with wave convergence zone.


2008 ◽  
Vol 610 ◽  
pp. 43-67 ◽  
Author(s):  
DANIEL C. CONLEY ◽  
SILVIA FALCHETTI ◽  
IRIS P. LOHMANN ◽  
MAURIZIO BROCCHINI

The two-way effects of the time-varying suppression of turbulence by gradients in suspended sediment concentration have been investigated using a modified form of the Generalized Ocean Turbulence Model (GOTM). Field measurements of fluid velocities and sediment concentrations collected under high-energy conditions (mobility number ≈ 900) have been simulated both including and neglecting the feedback between sediment and turbulence. The results show that, when present, this feedback increases the wave-coherent component of transport relative to the mean component of transport, which can even change the direction of transport. Comparisons between measured and simulated time series of near-bed sediment concentrations show great coherence (0.95 correlation) and it is argued that the differences in net transport rates may be partially explained by the use of a uniform grain size in the simulations. It is seen that the effects of sediment stratification scale with orbital velocity divided by sediment setting velocity, um/ws, for all grain sizes.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3854
Author(s):  
Hugo Martínez Sánchez ◽  
George Hadjipanayis ◽  
Germán Antonio Pérez Alcázar ◽  
Ligia Edith Zamora Alfonso ◽  
Juan Sebastián Trujillo Hernández

In this work, the mechanochemical synthesis method was used for the first time to produce powders of the nanocrystalline Nd1.1Fe10CoTi compound from Nd2O3, Fe2O3, Co and TiO2. High-energy-milled powders were heat treated at 1000 °C for 10 min to obtain the ThMn12-type structure. Volume fraction of the 1:12 phase was found to be as high as 95.7% with 4.3% of a bcc phase also present. The nitrogenation process of the sample was carried out at 350 °C during 3, 6, 9 and 12 h using a static pressure of 80 kPa of N2. The magnetic properties Mr, µ0Hc, and (BH)max were enhanced after nitrogenation, despite finding some residual nitrogen-free 1:12 phase. The magnetic values of a nitrogenated sample after 3 h were Mr = 75 Am2 kg–1, µ0Hc = 0.500 T and (BH)max = 58 kJ·m–3. Samples were aligned under an applied field of 2 T after washing and were measured in a direction parallel to the applied field. The best value of (BH)max~114 kJ·m–3 was obtained for 3 h and the highest µ0Hc = 0.518 T for 6 h nitrogenation. SEM characterization revealed that the particles have a mean particle size around 360 nm and a rounded shape.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


2020 ◽  
Vol 6 (21) ◽  
pp. eaaz4707 ◽  
Author(s):  
Rafael Tapia-Rojo ◽  
Alvaro Alonso-Caballero ◽  
Julio M. Fernandez

Vinculin binds unfolded talin domains in focal adhesions, which recruits actin filaments to reinforce the mechanical coupling of this organelle. However, it remains unknown how this interaction is regulated and its impact on the force transmission properties of this mechanotransduction pathway. Here, we use magnetic tweezers to measure the interaction between vinculin head and the talin R3 domain under physiological forces. For the first time, we resolve individual binding events as a short contraction of the unfolded talin polypeptide caused by the reformation of the vinculin-binding site helices, which dictates a biphasic mechanism that regulates this interaction. Force favors vinculin binding by unfolding talin and exposing the vinculin-binding sites; however, the coil-to-helix contraction introduces an energy penalty that increases with force, defining an optimal binding regime. This mechanism implies that the talin-vinculin-actin association could operate as a negative feedback mechanism to stabilize force on focal adhesions.


2020 ◽  
Vol 15 (S359) ◽  
pp. 283-284
Author(s):  
D. May ◽  
J. E. Steiner ◽  
R. B. Menezes

AbstractWe use near-infrared Integral Field Unit (IFU) data to analyze the galaxies NGC 4151 and NGC 1068, which have very different Eddington ratios - ˜50 times lower for NGC 4151. Together with a detailed data cube treatment methodology, we reveal remarkable similarities between both AGN, such as the detection of the walls of an “hourglass” structure for the low-velocity [Fe ii] emission with the high-velocity emission within this hourglass; a molecular outflow - detected for the first time in NGC 4151; and the fragmentation of an expanding molecular bubble into bullets of ionized gas. Such observations suggest that NGC 4151 could represent a less powerful and more compact version of the outflow seen in NGC 1068, suggesting a universal feedback mechanism acting in quite different AGN.


2021 ◽  
pp. 1-17
Author(s):  
Jef Vandenberghe ◽  
Xun Yang ◽  
Xianyan Wang ◽  
Shejiang Wang ◽  
Huayu Lu

Abstract This paper describes an assemblage of diverse floodplain facies of reworked loess (facies b, c) in a Middle Pleistocene monsoonal setting of the Hanzhong Basin, central China. The vertical and lateral sedimentary sequences show changing energy conditions. Apart from the highest energy in the channel facies (facies a), a relatively high energy floodplain environment (facies b) prevailed in waterlogged conditions, with small, laterally migrating (sub)channels. Facies b generally interfingers with aggrading horizontal sheets of overbank deposits in alluvial pools and swamps in a floodplain with much lower energy (facies c), in which phases of stability (soil formation) occasionally interrupted overbank deposition. Reworked loess forms the main part of the floodplain deposits. The paleosols are considered to have been formed under low hydrodynamic conditions in an interglacial environment. These interglacial conditions follow the commonly assumed glacial conditions of channel facies a. The sedimentary successions in the floodplain show a recurrent composition and cyclicity between wet and dry floodplain sedimentation terminated by stability with soil formation. The cyclic rhythm of stacked high- and low-energy floodplain sediments is attributed to varied intensity of different hydrodynamic flooding events that may have been due to changing monsoonal rainfall or simple intrinsic fluvial behavior.


2019 ◽  
Vol 19 (10) ◽  
pp. 2183-2205 ◽  
Author(s):  
Bruno Castelle ◽  
Tim Scott ◽  
Rob Brander ◽  
Jak McCarroll ◽  
Arthur Robinet ◽  
...  

Abstract. The two primary causes of surf zone injuries (SZIs) worldwide, including fatal drowning and severe spinal injuries, are rip currents (rips) and shore-break waves. SZIs also result from surfing and bodyboarding activity. In this paper we address the primary environmental controls on SZIs along the high-energy meso–macro-tidal surf beach coast of southwestern France. A total of 2523 SZIs recorded by lifeguards over 186 sample days during the summers of 2007, 2009 and 2015 were combined with measured and/or hindcast weather, wave, tide, and beach morphology data. All SZIs occurred disproportionately on warm sunny days with low wind, likely because of increased beachgoer numbers and hazard exposure. Relationships were strongest for shore-break- and rip-related SZIs and weakest for surfing-related SZIs, the latter being also unaffected by tidal stage or range. Therefore, the analysis focused on bathers. More shore-break-related SZIs occur during shore-normal incident waves with average to below-average wave height (significant wave height, Hs = 0.75–1.5 m) and around higher water levels and large tide ranges when waves break on the steepest section of the beach. In contrast, more rip-related drownings occur near neap low tide, coinciding with maximised channel rip flow activity, under shore-normal incident waves with Hs >1.25 m and mean wave periods longer than 5 s. Additional drowning incidents occurred at spring high tide, presumably due to small-scale swash rips. The composite wave and tide parameters proposed by Scott et al. (2014) are key controlling factors determining SZI occurrence, although the risk ranges are not necessarily transferable to all sites. Summer beach and surf zone morphology is interannually highly variable, which is critical to SZI patterns. The upper beach slope can vary from 0.06 to 0.18 between summers, resulting in low and high shore-break-related SZIs, respectively. Summers with coast-wide highly (weakly) developed rip channels also result in widespread (scarce) rip-related drowning incidents. With life risk defined in terms of the number of people exposed to life threatening hazards at a beach, the ability of morphodynamic models to simulate primary beach morphology characteristics a few weeks or months in advance is therefore of paramount importance for predicting the primary surf zone life risks along this coast.


Sign in / Sign up

Export Citation Format

Share Document