The effect of heating rate on the stability of stationary fluids

1967 ◽  
Vol 29 (2) ◽  
pp. 337-347 ◽  
Author(s):  
I. G. Currie

A horizontal fluid layer whose lower surface temperature is made to vary with time is considered. The stability analysis for this situation shows that the criterion for the onset of instability in a fluid layer which is being heated from below, depends on both the method and the rate of heating. For a fluid layer with two rigid boundaries, the minimum Rayleigh number corresponding to the onset of instability is found to be 1340. For slower heating rates the critical Rayleigh number increases to a maximum value of 1707·8, while for faster heating rates the critical Rayleigh number increases without limit.Two specific types of heating are investigated in detail, constant flux heating and linearly varying surface temperature. These cases correspond closely to situations for which published data exist. The results are in good qualitative agreement.

1984 ◽  
Vol 146 ◽  
pp. 115-125 ◽  
Author(s):  
F. H. Busse ◽  
E. W. Bolton

The stability properties of steady two-dimensional solutions describing convection in a horizontal fluid layer heated from below with stress-free boundaries are investigated in the neighbourhood of the critical Rayleigh number. The region of stable convection rolls as a function of the wavenumber α and the Rayleigh number R is bounded towards higher α by the monotonic skewed varicose instability, while towards low wavenumbers stability is limited by the zigzag instability or by the oscillatory skewed varicose instability. Only for a limited range of Prandtl numbers, 0·543 < P < ∞, does a finite domain of stability exist. In particular, convection rolls with the critical wavenumber αc are always unstable.


Author(s):  
M M Sorour ◽  
M A Hassab ◽  
F A Elewa

The linear stability theory is applied to study the effect of suction on the stability criteria of a horizontal fluid layer confined between two thin porous surfaces heated from below. This investigation covers a wide range of Reynolds number 0 ≥ Re ≥ 30, and Prandtl number 0.72 ≥ Pr ≥ 100. The results show that the critical Rayleigh number increases with Peclet number, and is independent of Pr as far as Re < 3. However, for Re > 3 the critical Rayleigh number is function of both Pr and Pe. In addition, the analysis is extended to study the effect of suction on the stability of two special superimposed fluid layers. The results in the latter case indicate a more stabilizing effect. Furthermore, the effect of thermal boundary conditions is also investigated.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
M. J. Kohl ◽  
M. Kristoffersen ◽  
F. A. Kulacki

Experiments are reported on initial instability, turbulence, and overall heat transfer in a porous medium heated from below. The porous medium comprises either water or a water-glycerin solution and randomly stacked glass spheres in an insulated cylinder of height:diameter ratio of 1.9. Heating is with a constant flux lower surface and a constant temperature upper surface, and the stability criterion is determined for a step heat input. The critical Rayleigh number for the onset of convection is obtained in terms of a length scale normalized to the thermal penetration depth as Rac=83/(1.08η−0.08η2) for 0.02<η<0.18. Steady convection in terms of the Nusselt and Rayleigh numbers is Nu=0.047Ra0.91Pr0.11(μ/μ0)0.72 for 100<Ra<5000. Time-averaged temperatures suggest the existence of a unicellular axisymmetric flow dominated by upflow over the central region of the heated surface. When turbulence is present, the magnitude and frequency of temperature fluctuations increase weakly with increasing Rayleigh number. Analysis of temperature fluctuations in the fluid provides an estimate of the speed of the upward moving thermals, which decreases with distance from the heated surface.


2014 ◽  
Vol 4 (3) ◽  
pp. 434-439
Author(s):  
Sameh Benna ◽  
Olfa Bayoudh

The effect of time periodic body force (or g-jitter or gravity modulation) on the onset of Rayleigh-Bnard electro-convention in a micropolar fluid layer is investigated by making linear and non-linear stability analysis. The stability of the horizontal fluid layer heated from below is examined by assuming time periodic body acceleration. This normally occurs in satellites and in vehicles connected with micro gravity simulation studies. A linear and non-linear analysis is performed to show that gravity modulation can significantly affect the stability limits of the system. The linear theory is based on normal mode analysis and perturbation method. Small amplitude of modulation is used to compute the critical Rayleigh number and wave number. The shift in the critical Rayleigh number is calculated as a function of frequency of modulation. The non-linear analysis is based on the truncated Fourier series representation. The resulting non-autonomous Lorenz model is solved numerically to quantify the heat transport. It is observed that the gravity modulation leads to delayed convection and reduced heat transport.


1972 ◽  
Vol 39 (1) ◽  
pp. 41-46 ◽  
Author(s):  
T. E. Unny

In an inclined adversely heated fluid layer confined between two rigid boundaries in a slot of large aspect ratio it is found that the unicellular base flow in the conduction regime becomes unstable with the formation of stationary secondary rolls with their axes along the line of inclination (x-rolls) for large Prandtl number fluids and axes perpendicular to the line of inclination (y-rolls) for small Prandtl number fluids. However, for angles near the vertical, the curve of the critical Rayleigh number versus inclination for x-rolls rises above that for y-rolls even for large Prandtl number fluids so that in a vertical fluid layer only cross rolls (y-rolls) could develop. The stability equations, as well as the results, reduce to those available for the horizontal fluid layer for which x-rolls are as likely to occur as y-rolls. It is seen that even a small inclination to the horizontal is enough to assign a definite direction for these two-dimensional cells, this direction depending on the Prandtl number. It is hoped that this basic information will be of help in the determination of the magnitude of the secondary cells in the postinstability regime and the heat transfer characteristics of the thin fluid layer.


2000 ◽  
Vol 55 (11-12) ◽  
pp. 957-966 ◽  
Author(s):  
P. K. Bhatia ◽  
B. S. Bhadauria

Abstract The linear stability problem for a fluid in a classic Benard configuration is considered. The applied temperature gradient is the sum of a steady component and a time-dependent periodic component. Only infinitesimal disturbances are considered. The time-dependent perturbation is expressed in Fourier series. The shift in critical Rayleigh number is calculated and the modulating effect of the oscillatory temperature gradient on the stability of the fluid layer is examined. Some comparison is made with known results.


2003 ◽  
Vol 58 (2-3) ◽  
pp. 176-182
Author(s):  
B. S. Bhadauria

The linear stability of a horizontal fluid layer, confined between two rigid walls, heated from below and cooled from above is considered. The temperature gradient between the walls consists of a steady part and a periodic part that oscillates with time. Only infinitesimal disturbances are considered. Numerical results for the critical Rayleigh number are obtained for various Prandtl numbers and for various values of the frequency. Some comparisons with known results have also been made.


1995 ◽  
Vol 117 (2) ◽  
pp. 329-333 ◽  
Author(s):  
J. Tang ◽  
H. H. Bau

Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Be´nard problem of an infinite fluid layer heated from below with Joule heating and cooled from above can be significantly increased through the use of feedback control strategies effecting small perturbations in the boundary data. The bottom of the layer is heated by a network of heaters whose power supply is modulated in proportion to the deviations of the temperatures at various locations in the fluid from the conductive, no-motion temperatures. Similar control strategies can also be used to induce complicated, time-dependent flows at relatively low Rayleigh numbers.


1970 ◽  
Vol 42 (4) ◽  
pp. 755-768 ◽  
Author(s):  
E. F. C. Somerscales ◽  
T. S. Dougherty

An experimental investigation has been made of the flow patterns at the initiation of convection in a layer of a high Prandtl number liquid confined between rigid, horizontal surfaces and heated from below. The experiment was designed to overcome the limitations of earlier experiments and to correspond closely to the conditions of the theory. In particular, the upper and lower rigid surfaces which enclosed the layer were made of copper which has a high thermal conductivity. To aid in the analysis of the experimental results some supplementary observations of the flow patterns were made using a glass upper plate. For small fluid depths and large temperature differences between the upper and lower surface the initial flow was in the form of hexagonal cells as predicted theoretically. With increasing Rayleigh number the cellular flow appeared to transform into rolls as predicted. For large fluid depths and small temperature differences only circular plan-form rolls were observed. This is in agreement with the results of other experimenters. It is tentatively proposed that this non-appearance of an initial cellular flow is due to the shape of the test chamber having a dominating influence on the flow pattern when the temperature gradient in the fluid is small. Measurements were also made of the development time for the flow patterns and the critical Rayleigh number.


1999 ◽  
Author(s):  
Pouya Amili ◽  
Yanis C. Yortsos

Abstract We study the linear stability of a two-phase heat pipe zone (vapor-liquid counterflow) in a porous medium, overlying a superheated vapor zone. The competing effects of gravity, condensation and heat transfer on the stability of a planar base state are analyzed in the linear stability limit. The rate of growth of unstable disturbances is expressed in terms of the wave number of the disturbance, and dimensionless numbers, such as the Rayleigh number, a dimensionless heat flux and other parameters. A critical Rayleigh number is identified and shown to be different than in natural convection under single phase conditions. The results find applications to geothermal systems, to enhanced oil recovery using steam injection, as well as to the conditions of the proposed Yucca Mountain nuclear waste repository. This study complements recent work of the stability of boiling by Ramesh and Torrance (1993).


Sign in / Sign up

Export Citation Format

Share Document