Long standing waves in a curved canal

1968 ◽  
Vol 34 (4) ◽  
pp. 759-768 ◽  
Author(s):  
B. Johns ◽  
A. M. O. Hamzah

The dynamics of long water waves are considered in a curved geometry representing a canal bend. The presence of the bend is found to produce a spectrum of transverse oscillations in the canal. The associated dominant amplitudes are evaluated for both tidal periods and higher frequencies representative of tsunamis. It is found that low-frequency waves do not lead to significant transverse amplitudes. For tsunamis, the presence of the bend may result in considerable changes in the local wave amplitude.

2020 ◽  
Author(s):  
Norberto Romanelli ◽  
Gina DiBraccio ◽  
Daniel Gershman ◽  
Guan Le ◽  
Christian Mazelle ◽  
...  

<p>In this work we perform the first statistical analysis of the main properties of waves observed in the 0.05–0.41 Hz frequency range in the Hermean foreshock by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Magnetometer. Although we find similar polarization properties to the '30 s' waves observed at the Earth's foreshock, the normalized wave amplitude (∼0.2) and occurrence rate (∼0.5%) are much smaller. This suggests significant lower backstreaming proton fluxes, due to the relatively low solar wind Alfvenic Mach number around Mercury. These differences could also be related to the relatively smaller foreshock size and/or more variable solar wind conditions. Furthermore, we estimate that the speed of resonant backstreaming protons in the solar wind reference frame (likely source for these waves) ranges between 0.95 and 2.6 times the solar wind speed. The closeness between this range and what is observed at other planetary foreshocks suggests that similar acceleration processes are responsible for this energetic population and might be present in the shocks of exoplanets.</p>


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
E. H. Lay ◽  
...  

AbstractLightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space. From burst-triggered measurements, we compute electric and magnetic power spectral density for very low frequency waves driven by superbolts, both on Earth and transmitted into space, demonstrating that superbolts transmit 10-1000 times more powerful very low frequency waves into space than typical strokes and revealing that their extreme nature is observed in space. We find several properties of superbolts that notably differ from most lightning flashes; a more symmetric first ground-wave peak due to a longer rise time, larger peak current, weaker decay of electromagnetic power density in space with distance, and a power mostly confined in the very low frequency range. Their signal is absent in space during day times and is received with a long-time delay on the Van Allen Probes. These results have implications for our understanding of lightning and superbolts, for ionosphere-magnetosphere wave transmission, wave propagation in space, and remote sensing of extreme events.


2000 ◽  
Vol 23 (3) ◽  
pp. 409-410
Author(s):  
Gottfried Mayer-Kress

Among the metaphors used in the target article are “musical instruments,” “water waves,” and other types of mechanical oscillators. The corresponding equations have inertial properties and lead to standing waves that depend on boundary conditions. Other, physiologically relevant quantities like refractory times are not contained in the mechanical oscillator model but occur naturally, for instance, in biological forest fire metaphors.


2008 ◽  
Vol 38 (4) ◽  
pp. 862-879 ◽  
Author(s):  
Brian F. Farrell ◽  
Petros J. Ioannou

Abstract Theoretical understanding of the growth of wind-driven surface water waves has been based on two distinct mechanisms: growth due to random atmospheric pressure fluctuations unrelated to wave amplitude and growth due to wave coherent atmospheric pressure fluctuations proportional to wave amplitude. Wave-independent random pressure forcing produces wave growth linear in time, while coherent forcing proportional to wave amplitude produces exponential growth. While observed wave development can be parameterized to fit these functional forms and despite broad agreement on the underlying physical process of momentum transfer from the atmospheric boundary layer shear flow to the water waves by atmospheric pressure fluctuations, quantitative agreement between theory and field observations of wave growth has proved elusive. Notably, wave growth rates are observed to exceed laminar instability predictions under gusty conditions. In this work, a mechanism is described that produces the observed enhancement of growth rates in gusty conditions while reducing to laminar instability growth rates as gustiness vanishes. This stochastic parametric instability mechanism is an example of the universal process of destabilization of nearly all time-dependent flows.


1968 ◽  
Vol 46 (10) ◽  
pp. S638-S641 ◽  
Author(s):  
D. B. Melrose

The acceleration of ions from thermal velocities is analyzed to determine conditions under which heavy ions can be preferentially accelerated. Two accelerating mechanisms involving high-and low-frequency hydromagnetic waves respectively are considered. Preferential acceleration of heavy ions occurs for high-frequency waves if the frequency spectrum falls off faster than (frequency)−1. For the low-frequency waves heavy ions are less effectively accelerated than lighter ions. However, very heavy ions can be preferentially accelerated, the abundances of the very heavy ions being enhanced by a factor Ai over the thermal abundances. Acceleration of ions in the envelope of the Crab nebula is considered as an example.


Sign in / Sign up

Export Citation Format

Share Document