Vortex growth in jets

1970 ◽  
Vol 44 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Gordon S. Beavers ◽  
Theodore A. Wilson

Observations are reported on the growth of vortices in the vortex sheets bounding the jet emerging from a sharp-edged two-dimensional slit and from a sharp-edged circular orifice. A regular periodic flow is observed near the orifice for both configurations when the Reynolds number of the jet lies between about 500 and 3000. The two-dimensional jet produces a symmetric pattern of vortex pairs with a Strouhal number of 0·43. Vortex rings are formed in the circular jet with a Strouhal number of 0·63. Computer experiments show that a growing pair of vortices in two parallel vortex sheets produces a symmetric pattern of vortices upstream from the original disturbance.

1972 ◽  
Vol 94 (3) ◽  
pp. 675-681 ◽  
Author(s):  
D. O. Rockwell

The fundamental transverse oscillations of a liquid jet which impinged upon a flow splitter were examined for a wide range of dimensionless splitter distance, nozzle exit Reynolds number, and dimensionless frequency. The results are presented in the form of a design map. The data, taken at low nozzle aspect ratio, reveal that fundamental (stage 1) oscillations can exist for Reynolds numbers up to at least 7000. Up to Reynolds numbers of about 3000, the jet behavior is Reynolds number dependent for all values of splitter distance. Beyond Reynolds number of 3000 the jet behavior is independent of Reynolds number. In general, the Strouhal number, based on nozzle exit-splitter distance, decreases with increasing values of splitter distance. Jets issuing from nozzles with no parallel development sections were considered. Jet nozzle shape influences the dimensionless frequency of oscillation in that the effect of a vena contracta formation outside the nozzle exit is to yield a higher value of dimensionless frequency relative to nozzles which produce parallel flow with small boundary layer thickness at the exit. Similar decreases have been found for two-dimensional jets. Of the above findings, the only comparable results for two-dimensional jets are variations in Strouhal number with nozzle exit-splitter distance.


2011 ◽  
Vol 690 ◽  
pp. 173-202 ◽  
Author(s):  
Pauline Assemat ◽  
David Fabre ◽  
Jacques Magnaudet

AbstractWe consider the transition between the steady vertical path and the oscillatory path of two-dimensional bodies moving under the effect of buoyancy in a viscous fluid. Linearization of the Navier–Stokes equations governing the flow past the body and of Newton’s equations governing the body dynamics leads to an eigenvalue problem, which is solved numerically. Three different body geometries are then examined in detail, namely a quasi-infinitely thin plate, a plate of rectangular cross-section with an aspect ratio of 8, and a rod with a square cross-section. Two kinds of eigenmodes are observed in the limit of large body-to-fluid mass ratios, namely ‘fluid’ modes identical to those found in the wake of a fixed body, which are responsible for the onset of vortex shedding, and four additional ‘aerodynamic’ modes associated with much longer time scales, which are also predicted using a quasi-static model introduced in a companion paper. The stability thresholds are computed and the nature of the corresponding eigenmodes is investigated throughout the whole possible range of mass ratios. For thin bodies such as a flat plate, the Reynolds number characterizing the threshold of the first instability and the associated Strouhal number are observed to be comparable with those of the corresponding fixed body. Other modes are found to become unstable at larger Reynolds numbers, and complicated branch crossings leading to mode switching are observed. On the other hand, for bluff bodies such as a square rod, two unstable modes are detected in the range of Reynolds number corresponding to wake destabilization. For large enough mass ratios, the leading mode is similar to the vortex shedding mode past a fixed body, while for smaller mass ratios it is of a different nature, with a Strouhal number about half that of the vortex shedding mode and a stronger coupling with the body dynamics.


Author(s):  
Katsuya Hirata ◽  
Jiro Funaki ◽  
Katsuya Yamada ◽  
Hirohisa Wakisaka

In the present study, the authors investigate an oscillatory phenomenon of a two-dimensional confined jet with a square prism, by experiments and computations. In experiments in an air duct, jet’s frequencies were measured near the target by a hot-wire anemometer, in the Reynolds-number range of 300–5000. In computations, the numerical method adopted here is a finite difference method formulated in terms of vorticity and stream function. As a result, we can see the Reynolds-number effect, the target-distance effect and the target-size effect upon Strouhal number. Regarding the Reynolds-number effect, it was found that there is less influence, which guarantees widerange workability as a flowmeter or a mixer. Regarding geometrical parameters, the results show information for optimal configurations. The results can be surnmarised in an empirical formula describing the relation between Strouhal number and geometrical parameters, with a specified unstable range. Computed jet’s frequencies were confirrned to be in good agreement with experimental ones, which indicates that the phenomenon is intrinsically two-dimensional. Numerical results reveal details of flow field and possibility for applications.


2010 ◽  
Vol 16 (3) ◽  
pp. 245-258 ◽  
Author(s):  
C. M. Sewatkar ◽  
Atul Sharma ◽  
Amit Agrawal

A model for studying the flow forces experienced by cylinders placed in V formation is presented, and an elementary comparison with flocking birds is made. The cylinders are modeled as two-dimensional square bodies exposed to incoming flow at Reynolds number 100. The effects of angle of formation (α), streamwise spacing (Ss), and number of cylinders (N) on parameters such as the coefficient of drag, coefficient of lateral force, and Strouhal number are studied. It is observed that the drag experienced by the cylinders decreases with a decrease in the angle of formation. The leading cylinder experiences the smallest drag, irrespective of the angle. The drag becomes less than the drag on an isolated cylinder at certain angles depending on the position of the cylinder in the formation. The average drag on cylinders in V formation is found to be less than on an isolated cylinder, leading to energy saving when flying in formation. It is also noted that the cylinders experience a substantial lateral force. Study of this simple model may help better understand certain features of flocking birds.


2011 ◽  
Vol 687 ◽  
pp. 72-117 ◽  
Author(s):  
Ivan Di Piazza ◽  
Michele Ciofalo

AbstractIncompressible flow in toroidal pipes of circular cross-section was investigated by three-dimensional, time-dependent numerical simulations using a finite volume method. The computational domain included a whole torus and was discretized by up to ${\ensuremath{\sim} }11. 4\ensuremath{\times} 1{0}^{6} $ nodes. Two curvatures $\delta $ (radius of the cross-section/radius of the torus), namely 0.3 and 0.1, were examined; a streamwise forcing term was imposed, and its magnitude was made to vary so that the bulk Reynolds number ranged between ${\ensuremath{\sim} }3500$ and ${\ensuremath{\sim} }14\hspace{0.167em} 700$. The results were processed by different techniques in order to confirm the spatio-temporal structure of the flow. Consecutive transitions between different flow regimes were found, from stationary to periodic, quasi-periodic and chaotic flow. At low Reynolds number, stationary flow was predicted, exhibiting a symmetric couple of Dean vortex rings and a strong shift of the streamwise velocity maximum towards the outer wall. For $\delta = 0. 3$, between $\mathit{Re}= 4556$ and $\mathit{Re}= 4605$ a first transition occurred from stationary to periodic flow, associated with a supercritical Hopf bifurcation and giving rise to a travelling wave which took the form of a varicose streamwise modulation of the Dean vortex ring intensity. A further transition, associated with a secondary Hopf bifurcation, occurred between $\mathit{Re}= 5042$ and $\mathit{Re}= 5270$ and led to a quasi-periodic flow characterized by two independent fundamental frequencies associated with distinct travelling waves, the first affecting mainly the Dean vortex rings and similar to that observed in purely periodic flow, the second localized mainly in the secondary flow boundary layers and manifesting itself as an array of oblique vortices produced at the edge of the Dean vortex regions. Both the periodic and the quasi-periodic regimes were characterized by an instantaneous anti-symmetry of the oscillatory components with respect to the equatorial midplane of the torus. For $\delta = 0. 1$, between $\mathit{Re}= 5139$ and $\mathit{Re}= 5208$ a direct (‘hard’) transition from steady to quasi-periodic flow occurred. Hysteresis was also observed: starting from a quasi-periodic solution and letting the Reynolds number decrease, both quasi-periodic and periodic stable solutions were obtained at Reynolds numbers below the critical value. A further decrease in $\mathit{Re}$ led to steady-state solutions. This behaviour suggests the existence of a subcritical Hopf bifurcation followed by a secondary Hopf bifurcation. The resulting periodic and quasi-periodic flows were similar to those observed for the higher curvature, but the travelling modes were now instantaneously symmetric with respect to the equatorial midplane of the torus. Also, the further transition from quasi-periodic to chaotic flow occurred with different modalities for the two curvatures. For $\delta = 0. 3$, a centrifugal instability of the main flow in the outer region occurred abruptly between $\mathit{Re}= 7850$ and $\mathit{Re}= 8160$, while a further increase of $\mathit{Re}$ up to 13 180 did not cause any relevant change in the distribution and intensity of the fluctuations. For $\delta = 0. 1$ the transition to chaotic flow was gradual in the range $\mathit{Re}= 6280$ to 8160 and affected mainly the inner region; only a further increase of $\mathit{Re}$ to 14 700 caused fluctuations to appear also in the outer region.


2018 ◽  
Vol 192 ◽  
pp. 02030
Author(s):  
Sodsai Lamtharn ◽  
Monsak Pimsarn

Numerical simulation of two-dimensional laminar unsteady flow past a right trapezoidal cylinder at low Reynolds number (Re = 100), zero of the flow approaching angle and sharpening angle of the right trapezoidal of 22.5° with a side ratio B/A = 1 are carried out to provide moreapplicable data for engineering design of barred tee in aspect of structural integrity. A finite volume method, non-uniform meshing with second-order implicit time discretization into eight-node quadratic quadrilateral finite elements is employed. An incompressible flow SIMPLEC code with constant fluid properties is used. The convective terms using a third-order QUICK scheme. The numerical simulation result is compared against the published results of flow past a square cylinder. The effect of sharpening angle on the response of the right trapezoidal cylinder is investigated. A special study of the effects of flow on significant factor for time step, grid independence, blockage ratio, domain size, upstream and downstream extents, size domain next to cylinder and size domain extent are performed systematically. The Strouhal number and RMS lift coefficients of fully saturated flow are calculated. The result shown that increasing of sharpening angle, the Strouhal number is negligible changed whilst the RMS lift coefficients significantly increased.


1967 ◽  
Vol 71 (684) ◽  
pp. 854-858 ◽  
Author(s):  
D. J. Maull ◽  
B. J. Hoole

SummarySome experiments on the effect of boat-tailing on the pressure distribution round blunt-based aerofoils are described. The experiments were carried out at low speeds at a Reynolds number of 1.5 X 105. The wake was investigated with attention being paid to the vortex shedding, and to the distance downstream of the base where vortices form.It is shown that the theory due to Nash predicts the effect of boat-tailing on base pressure quite well and that a correlation of drag coefficient, Strouhal number and base pressure proposed by Bearman applies to the models tested here.


2017 ◽  
Vol 56 (4) ◽  
pp. 191-199
Author(s):  
Vaidas Juknevičius ◽  
Jogundas Armaitis

Motivated by recent experimental and computational results concerning a three-dimensional structure of vortices behind a vortex shedding flow meter [M. Reik et al., Forsch. Ingenieurwes. 74, 77 (2010)], we study the Strouhal–Reynolds number dependence in the vortex street in two dimensions behind a trapezoid-shaped object by employing two types of Frisch–Hasslacher–Pomeau (FHP) models. Our geometry is intended to reproduce the operation of a vortex shedding flow meter in a two-dimensional setting, thus preventing the formation of a three-dimensional vortex structure. In particular, we check if the anomalous Reynolds–Strouhal number dependence reported for three dimensions can also be found in our two-dimensional simulation. As we find that the Strouhal number is nearly independent of the Reynolds number in this particular setup, our results provide support for the hypothesis that three-dimensional flow structures are responsible for that dependence, thus hinting at the importance of the pipe diameter to the accurate operation of industrial vortex flow meters.


2008 ◽  
Vol 604 ◽  
pp. 33-53 ◽  
Author(s):  
KAK NAMKOONG ◽  
JUNG YUL YOO ◽  
HYOUNG G. CHOI

The two-dimensional motion of a circular cylinder freely falling or rising in an infinite fluid is investigated numerically for the range of Reynolds number Re, < 188 (Galileo number G < 163), where the wake behind the cylinder remains two-dimensional, using a combined formulation of the governing equations for the fluid and the dynamic equations for the cylinder. The effect of vortex shedding on the motion of the freely falling or rising cylinder is clearly shown. As the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross-product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. Correlations of the Strouhal–Reynolds-number and Strouhal–Galileo-number relationship are deduced from the results. The Strouhal number is found to be smaller than that for the corresponding fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of the freely falling or rising circular cylinder and the free-stream velocity of the fixed one are the same. From numerical experiments, it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number. The effect of the transverse motion is similar to that of suction flow on the low-pressure side, where a vortex is generated and then separates, so that the pressure on this side recovers with the vortex separation retarded. The effects of the transverse motion on the lift, drag and moment coefficients are also discussed. Finally, the effect of the solid/fluid density ratio on Strouhal–Reynolds-number relationship is investigated and a plausible correlation is proposed.


1976 ◽  
Vol 98 (3) ◽  
pp. 461-466 ◽  
Author(s):  
B. C. Syamala Rao ◽  
D. V. Chandrasekhara

The characteristic dimensions of the steady cavity and the shedding frequency of vortices behind six circular cylinders in a two-dimensional venturi have been studied. The normalized length and maximum width of cavity for cavitation sources of different sizes indicated unified trends with a modified cavitation number km. The angles of detachment θ increased with cavitation number k and decreased with increasing Reynolds number R. The Strouhal number Sd reached minimum values for all cavitation sources at small values of k. The possible role of wall effects on the investigations are discussed.


Sign in / Sign up

Export Citation Format

Share Document