Wave breaking in the presence of wind drift and swell

1974 ◽  
Vol 66 (4) ◽  
pp. 625-640 ◽  
Author(s):  
O. M. Phillips ◽  
M. L. Banner

Wind, blowing over a water surface, induces a thin layer of high vorticity in which the wind stress is supported by molecular viscosity; the magnitude of the surface drift, the velocity difference across the layer, being of the order of 3% of the wind speed. When long waves move across the surface, there is a nonlinear augmentation of the surface drift near the long-wave crests, so that short waves, superimposed on the longer ones, experience an augmented drift in these regions. This is shown to reduce the maximum amplitude that the short waves can attain when they are at the point of incipient breaking.Theoretical estimates of the reduction are compared with measurements in wind-wave tanks by the authors and by Mitsuyasu (1966) in which long mechanically generated waves are superimposed on short wind-generated waves. The reductions measured in the energy density of the short waves by increasing the slope of the longer ones at constant wind speed are generally consistent with the predictions of the theory in a variety of cases.

2010 ◽  
Vol 40 (9) ◽  
pp. 1917-1941 ◽  
Author(s):  
Fabrice Ardhuin ◽  
Erick Rogers ◽  
Alexander V. Babanin ◽  
Jean-François Filipot ◽  
Rudy Magne ◽  
...  

Abstract New parameterizations for the spectral dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observations of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is nonzero only when a nondimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short-wave dissipation is introduced to represent the dissipation of short waves due to longer breaking waves. A reduction of the wind-wave generation of short waves is meant to account for the momentum flux absorbed by longer waves. These parameterizations are combined and calibrated with the discrete interaction approximation for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but, overall, the parameterizations probably yield the most accurate estimates of wave parameters to date. Perspectives for further improvement are also given.


2007 ◽  
Vol 573 ◽  
pp. 417-456 ◽  
Author(s):  
M. H. KAMRAN SIDDIQUI ◽  
MARK R. LOEWEN

An experimental study, investigating the mean flow and turbulence in the wind drift layer formed beneath short wind waves was conducted. The degree to which these flows resemble the flows that occur in boundary layers adjacent to solid walls (i.e. wall-layers) was examined. Simultaneous DPIV (digital particle image velocimetry) and infrared imagery were used to investigate these near-surface flows at a fetch of 5.5 m and wind speeds from 4.5 to 11 m s−1. These conditions produced short steep waves with dominant wavelengths from 6 cm to 18 cm. The mean velocity profiles in the wind drift layer were found to be logarithmic and the flow was hydrodynamically smooth at all wind speeds. The rate of dissipation of turbulent kinetic energy was determined to be significantly greater in magnitude than would occur in a comparable wall-layer. Microscale breaking waves were detected using the DPIV data and the characteristics of breaking and non-breaking waves were compared. The percentage of microscale breaking waves increased abruptly from 11% to 80% as the wind speed increased from 4.5 to 7.4 m s− and then gradually increased to 90% as the wind speed increased to 11 m s−. At a depth of 1 mm, the rate of dissipation was 1.7 to 3.2 times greater beneath microscale breaking waves compared to non-breaking waves. In the crest–trough region beneath microscale breaking waves, 40% to 50% of the dissipation was associated with wave breaking. These results demonstrated that the enhanced near-surface turbulence in the wind drift layer was the result of microscale wave breaking. It was determined that the rate of dissipation of turbulent kinetic energy due to wave breaking is a function of depth, friction velocity, wave height and phase speed as proposed by Terray et al. (1996). Vertical profiles of the rate of dissipation showed that beneath microscale breaking waves there were two distinct layers. Immediately beneath the surface, the dissipation decayed as ζ−0.7 and below this in the second layer it decayed as ζ−2. The enhanced turbulence associated with microscale wave breaking was found to extend to a depth of approximately one significant wave height. The only similarity between the flows in these wind drift layers and wall-layers is that in both cases the mean velocity profiles are logarithmic. The fact that microscale breaking waves were responsible for 40%–50% of the near-surface turbulence supports the premise that microscale breaking waves play a significant role in enhancing the transfer of gas and heat across the air–sea interface.


Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


2021 ◽  
Author(s):  
Alexander Kandaurov ◽  
Yuliya Troitskaya ◽  
Vasiliy Kazakov ◽  
Daniil Sergeev

<p>Whitecap coverage were retrieved from high-speed video recordings of the water surface obtained on the unique laboratory faculty The Large Thermostratified Test Tank with wind-wave channel (cross-section from 0.7×0.7 to 0.7×0.9 m<sup>2</sup> at the end, 12 m fetch, wind velocity up to 35 m/s, U<sub>10</sub> up to 65 m/s). The wind wave was induced using a wave generator installed at the beginning of the channel (a submerged horizontal plate, frequency 1.042 Hz, amplitude 93 mm) working in a pulsed operation (three periods). Wave breaking was induced in working area by a submerged plate (1.2×0.7 m<sup>2</sup>, up to 12 depth, AOA -11,7°). Experiments were carried out for equivalent wind velocities U<sub>10</sub> from 17.8 to 40.1 m/s. Wire wave gauge was used to control the shape and phase of the incident wave.</p><p>To obtain the surface area occupied by wave breaking, we used two Cygnet CY2MP-CL-SN cameras with 50 mm lenses. The cameras are installed above the channel at a height of 273 cm from the water surface, separated by 89 cm. The image scale was 302 μm/px, the size of the image obtained from each camera is 2048x1088 px<sup>2</sup>, which corresponds to 619x328 mm<sup>2</sup> (the long side of the frame along the channel). The shooting was carried out with a frequency of 50 Hz, an exposure time of 3 ms, 250 frames were recorded for each wave train. To illuminate the image areas to the side of the measurement area, a diffuse screen was placed on the side wall, which was illuminated by powerful LED lamps to create a uniform illumination source covering the entire side wall of the section.</p><p>Using specially developed software for automatic detection of areas of wave breaking, the values of the whitecap coverage area were obtained. Automatic image processing was performed using morphological analysis in combination with manual processing of part of the frames for tweaking the algorithm parameters: for each mode, manual processing of several frames was performed, based on the results of which automatic algorithm parameters were selected to ensure that the resulting whitecap coverage corresponded. Comparison of images obtained from different angles made it possible to detect and exclude areas of glare on the surface from the whitecap coverage.</p><p>The repeatability of the created wave breakings allows carrying out independent measurements for the same conditions, for example the parameters of spray generation will give estimations of the average number of fragmentation events per unit area of the wave breaking area.</p><p>The work was supported by the RFBR grants 21-55-50005 and 20-05-00322 (conducting an experiment), President grant for young scientists МК-5503.2021.1.5 (software development) and the RSF grant No. 19-17-00209 (data processing).</p>


2019 ◽  
Vol 25 (6) ◽  
Author(s):  
A. E. Korinenko ◽  
V. V. Malinovsky ◽  
V. N. Kudryavtsev ◽  
◽  
◽  
...  

2020 ◽  
Vol 12 (20) ◽  
pp. 3445
Author(s):  
Qiushuang Yan ◽  
Chenqing Fan ◽  
Jie Zhang ◽  
Junmin Meng

The rain-free normalized radar cross-section (NRCS) measurements from the Ku-band precipitation radars (PRs) aboard the tropical rainfall measuring mission (TRMM) and the global precipitation measurement (GPM) mission, along with simultaneous sea surface wind truth from buoy observations, stepped-frequency microwave radiometer (SFMR) measurements, and H*Wind analyses, are used to investigate the abilities of the quasi-specular scattering models, i.e., the physical optics model (PO) and the classical and improved geometrical optics models (GO and GO4), to reproduce the Ku-band NRCS at low incidence angles of 0–18° over the wind speed range of 0–45 m/s. On this basis, the limitations of the quasi-specular scattering theory and the effects of wave breaking are discussed. The results show that the return caused by quasi-specular reflection is affected significantly by the presence of background swell waves at low winds. At moderate wind speeds of 5–15 m/s, the NRCS is still dominated by the quasi-specular reflection, and the wave breaking starts to work but its contribution is very small, thus, the models are found in excellent agreement with the measurements. With wind speed increasing, the impact of wave breaking increases, whereas the role of standard quasi-specular reflection decreases. The wave breaking impact on NRCS is first visible at incidence angles near 18° as wind speed exceeds about 20 m/s, then it becomes dominant when wind speed exceeds about 37 m/s where the NRCS is insensitive to wind speed and depends linearly on incidence angle, which cannot be explained by the standard quasi-specular scattering theory.


2016 ◽  
Vol 810 ◽  
pp. 5-24 ◽  
Author(s):  
M. Hirata ◽  
S. Okino ◽  
H. Hanazaki

Capillary–gravity waves resonantly excited by an obstacle (Froude number: $Fr=1$) are investigated by the numerical solution of the Euler equations. The radiation of short waves from the long nonlinear waves is observed when the capillary effects are weak (Bond number: $Bo<1/3$). The upstream-advancing solitary wave radiates a short linear wave whose phase velocity is equal to the solitary waves and group velocity is faster than the solitary wave (soliton radiation). Therefore, the short wave is observed upstream of the foremost solitary wave. The downstream cnoidal wave also radiates a short wave which propagates upstream in the depression region between the obstacle and the cnoidal wave. The short wave interacts with the long wave above the obstacle, and generates a second short wave which propagates downstream. These generation processes will be repeated, and the number of wavenumber components in the depression region increases with time to generate a complicated wave pattern. The upstream soliton radiation can be predicted qualitatively by the fifth-order forced Korteweg–de Vries equation, but the equation overestimates the wavelength since it is based on a long-wave approximation. At a large Bond number of $Bo=2/3$, the wave pattern has the rotation symmetry against the pattern at $Bo=0$, and the depression solitary waves propagate downstream.


Sign in / Sign up

Export Citation Format

Share Document