Laser anemometer study of flow development in curved circular pipes

1978 ◽  
Vol 85 (3) ◽  
pp. 497-518 ◽  
Author(s):  
Y. Agrawal ◽  
L. Talbot ◽  
K. Gong

An experimental investigation was carried out of the development of steady, laminar, incompressible flow of a Newtonian fluid in the entry region of a curved pipe for the entry condition of uniform motion. Two semicircular pipes of radius ratios 1/20 and 1/7 were investigated, covering a Dean number range from 138 to 679. The axial velocity and the component of secondary velocity parallel to the plane of curvature of the pipe were measured using laser anemometry. It was observed that, in the upstream region where the boundary layers are thin compared with the pipe radius, the axial velocity within the irrotational core first develops to form a vortex-like flow. In the downstream region, characterized by viscous layers of thickness comparable with the pipe radius, there appears to be three-dimensional separation at the inner wall. There is also an indication of an additional vortex structure embedded within the Dean-type secondary motion. The experimental axial velocity profiles are compared with those constructed from the theoretical analyses of Singh and Yao & Berger. The quantitative agreement between theory and experiment is found to be poor; however, some of the features observed in the experiment are in qualitative agreement with the theoretical solution of Yao & Berger.

1987 ◽  
Vol 109 (1) ◽  
pp. 55-61 ◽  
Author(s):  
K. C. Cheng ◽  
F. P. Yuen

Secondary flow patterns at the exit of a 180 deg bend (tube inside diameter d = 1.99 cm, radius of curvature Rc = 10.85 cm) are presented to illustrate the combined effects of centrifugal and buoyancy forces in hydrodynamically and thermally developing entrance region of an isothermally heated curved pipe with both parabolic and turbulent entrance velocity profiles. Three cases of upward, horizontal, and downward-curved pipe flows are studied for constant wall temperatures Tw=55–91°C, Dean number range K=22–1209 and ReRa=1.00×106–8.86×107. The flow visualization was realized by the smoke injection method. The secondary flow patterns shown are useful for future comparison with numerical predictions and confirming theoretical models. The results can be used to assess qualitatively the limit of the applicability of the existing correlation equations for laminar forced convection in isothermally heated curved pipes without buoyancy effects.


Author(s):  
L Khezzar ◽  
J H Whitelaw ◽  
M Yianneskis

This paper describes an experimental investigation of the water flows through one axisymmetric and two asymmetric round sudden expansions from a 48 mm to an 84 mm diameter pipe and eccentricities of the pipe axes of 0, 5 and 15 mm respectively. Flow visualization revealed the presence of vortex rings downstream of the plane of expansion for transitional Reynolds numbers (Re, based on the upstream pipe diameter and bulk flow velocity) and reattachment lengths were determined in the Reynolds number range 120–40 000 for all three cases. Detailed measurements of the three mean velocity components and corresponding fluctuations were obtained by laser anemometry for Re = 40000. Wall static pressure measurements are also presented. The results show that asymmetry of the inlet geometry strongly influences the distribution of mean and turbulence quantities downstream of the expansion and results in three-dimensional reattachment. In all three flows, the mean flow was nearly uniform and the turbulence nearly homogeneous at distances of seven diameters of the large pipe downstream of the expansion. Higher levels of turbulence were found in the asymmetric ducts with maxima twice those in the axisymmetric duct.


1984 ◽  
Vol 148 ◽  
pp. 109-135 ◽  
Author(s):  
W. Y. Soh ◽  
S. A. Berger

The full elliptic Navier–Stokes equations have been solved for entrance flow into a curved pipe using the artificial compressibility technique developed by Chorin (1967). The problem is formulated for arbitrary values of the curvature ratio and the Dean number. Calculations are carried out for two curvature ratios, a/R = 1/7 and 1/20, and for Dean number ranging from 108.2 to 680.3, in a computational mesh extending from the inlet immediately adjacent to the reservoir to the fully developed downstream region.Secondary flow separation near the inner wall is observed in the developing region of the curved pipe. The separation and the magnitude of the secondary flow are found to be greatly influenced by the curvature ratio. As observed in the experiments of Agrawal, Talbot & Gong (1978) we find: (i) two-step plateau-like axial-velocity profiles for high Dean number, due to the secondary flow separation, and (ii) doubly peaked axial-velocity profiles along the lines parallel to the plane of symmetry, due to the highly distorted secondary-flow vortex structure.


The influence of curvature on a pipeflow is discussed for a pipe that starts bending uniformly after an initial straight section. The Reynolds number and curvature are assumed large and small respectively, and the motion is examined first for distances from the starting of the bend that are com­parable with the tubewidth. When the Dean number is finite, the coreflow remains practically undisturbed, i. e. unidirectional, until the bend and thereafter streams uniformly towards the outside of the curve, inducing a three dimensional boundary layer. This layer, however, has to react before the bending in order to adjust to the downstream conditions. It does so by means of a novel kind of upstream response. The azimuthal pressure variation generated by the bend is felt upstream and therefore both drives an inwards azimuthal motion in the boundary layer and produces an axial shear maximum at the inside wall. In the curved section the centrifuging then causes the maximum to shift to the outer bend at 1.51 pipe-radii beyond the start of bending. Finally, the theory is extended to longer lengthscales, to large Dean numbers and to general initial profiles.


2021 ◽  
Vol 15 (2) ◽  
pp. 7964-7982
Author(s):  
Rachid Chiremsel ◽  
Ali Fourar ◽  
Fawaz Massouh ◽  
Zakarya Chiremsel

The Reynolds–averaged Navier–Stokes (RANS) equations were solved along with Reynolds stress model (RSM), to study the fully-developed unsteady and anisotropic single-phase turbulent flow in 90° bend pipe with circular cross-section. Two flow configurations are considered the first is without ribs and the second is with ribs attached to solid walls. The number of ribs is 14 ribs regularly placed along the straight pipe. The pitch ratios is 40 and the rib height e (mm) is 10% of the pipe diameter. Both bends have a curvature radius ratio, of 2.0. The solutions of these flows were obtained using the commercial CFD software Fluent at a Dean number range from 5000 to 40000. In order to validate the turbulence model, numerical simulations were compared with the existing experimental data. The results are found in good agreement with the literature data. After validation of the numerical strategy, the axial velocity distribution and the anisotropy of the Reynolds stresses at several downstream longitudinal locations were obtained in order to investigate the hydrodynamic developments of the analyzed flow. The results show that in the ribbed bend pipe, the maximum velocity value is approximately 47% higher than the corresponding upstream value but it is 9% higher in the case of the bend pipe without ribs. It was also found for both cases that the distribution of the mean axial velocity depends faintly on the Dean number. Finally, it can be seen that the analyzed flow in the bend pipe without ribs appears more anisotropic than in bend pipe with ribs.


2004 ◽  
Vol 126 (5) ◽  
pp. 861-870 ◽  
Author(s):  
A. Thakur ◽  
X. Liu ◽  
J. S. Marshall

An experimental and computational study is performed of the wake flow behind a single yawed cylinder and a pair of parallel yawed cylinders placed in tandem. The experiments are performed for a yawed cylinder and a pair of yawed cylinders towed in a tank. Laser-induced fluorescence is used for flow visualization and particle-image velocimetry is used for quantitative velocity and vorticity measurement. Computations are performed using a second-order accurate block-structured finite-volume method with periodic boundary conditions along the cylinder axis. Results are applied to assess the applicability of a quasi-two-dimensional approximation, which assumes that the flow field is the same for any slice of the flow over the cylinder cross section. For a single cylinder, it is found that the cylinder wake vortices approach a quasi-two-dimensional state away from the cylinder upstream end for all cases examined (in which the cylinder yaw angle covers the range 0⩽ϕ⩽60°). Within the upstream region, the vortex orientation is found to be influenced by the tank side-wall boundary condition relative to the cylinder. For the case of two parallel yawed cylinders, vortices shed from the upstream cylinder are found to remain nearly quasi-two-dimensional as they are advected back and reach within about a cylinder diameter from the face of the downstream cylinder. As the vortices advect closer to the cylinder, the vortex cores become highly deformed and wrap around the downstream cylinder face. Three-dimensional perturbations of the upstream vortices are amplified as the vortices impact upon the downstream cylinder, such that during the final stages of vortex impact the quasi-two-dimensional nature of the flow breaks down and the vorticity field for the impacting vortices acquire significant three-dimensional perturbations. Quasi-two-dimensional and fully three-dimensional computational results are compared to assess the accuracy of the quasi-two-dimensional approximation in prediction of drag and lift coefficients of the cylinders.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 691
Author(s):  
Francisco-José Gallardo-Basile ◽  
Yannick Naunheim ◽  
Franz Roters ◽  
Martin Diehl

Lath martensite is a complex hierarchical compound structure that forms during rapid cooling of carbon steels from the austenitic phase. At the smallest, i.e., ‘single crystal’ scale, individual, elongated domains, form the elemental microstructural building blocks: the name-giving laths. Several laths of nearly identical crystallographic orientation are grouped together to blocks, in which–depending on the exact material characteristics–clearly distinguishable subblocks might be observed. Several blocks with the same habit plane together form a packet of which typically three to four together finally make up the former parent austenitic grain. Here, a fully parametrized approach is presented which converts an austenitic polycrystal representation into martensitic microstructures incorporating all these details. Two-dimensional (2D) and three-dimensional (3D) Representative Volume Elements (RVEs) are generated based on prior austenite microstructure reconstructed from a 2D experimental martensitic microstructure. The RVEs are used for high-resolution crystal plasticity simulations with a fast spectral method-based solver and a phenomenological constitutive description. The comparison of the results obtained from the 2D experimental microstructure and the 2D RVEs reveals a high quantitative agreement. The stress and strain distributions and their characteristics change significantly if 3D microstructures are used. Further simulations are conducted to systematically investigate the influence of microstructural parameters, such as lath aspect ratio, lath volume, subblock thickness, orientation scatter, and prior austenitic grain shape on the global and local mechanical behavior. These microstructural features happen to change the local mechanical behavior, whereas the average stress–strain response is not significantly altered. Correlations between the microstructure and the plastic behavior are established.


2001 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Thermocapillary convection driven by a uniform heat flux in an open cylindrical container of unit aspect ratio is investigated by two- and three-dimensional numerical simulations. The undeformable free surface is either flat or curved as determined by the fluid volume (V ≤ 1) and the Young-Laplace equation. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re) with either flat or curved interfaces. Only steady convection is possible in strictly axisymmetric computations. Transition to oscillatory three-dimensional motions occurs as Re increases beyond a critical value dependent on Pr and V. With a flat free surface (V = 1), two-lobed pulsating waves are found on the free surface and prevail with increasing Re. While the critical Re increases with increasing Pr, the critical frequency decreases. In the case of a concave surface, four azimuthal waves are found rotating clockwise on the surface. The critical Re decreases with increasing fluid volume, and the critical frequency is found to increase. The numerical results with either flat or curved free surfaces are in good quantitative agreement with space experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Quanlin Dong ◽  
Pengfei Wang

In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratioδhas received much attention, but most of the values ofδare very small (δ<0.1) or relatively small (δ≤0.5). As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES) turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 427
Author(s):  
Ravi Sudam Jadhav ◽  
Amit Agrawal

In the present work, we study the normal shock wave flow problem using a combination of the OBurnett equations and the Holian conjecture. The numerical results of the OBurnett equations for normal shocks established several fundamental aspects of the equations such as the thermodynamic consistency of the equations, and the existence of the heteroclinic trajectory and smooth shock structures at all Mach numbers. The shock profiles for the hydrodynamic field variables were found to be in quantitative agreement with the direct simulation Monte Carlo (DSMC) results in the upstream region, whereas further improvement was desirable in the downstream region of the shock. For the discrepancy in the downstream region, we conjecture that the viscosity–temperature relation (μ∝Tφ) needs to be modified in order to achieve increased dissipation and thereby achieve better agreement with the benchmark results in the downstream region. In this respect, we examine the Holian conjecture (HC), wherein transport coefficients (absolute viscosity and thermal conductivity) are evaluated using the temperature in the direction of shock propagation rather than the average temperature. The results of the modified theory (OBurnett + HC) are compared against the benchmark results and we find that the modified theory improves upon the OBurnett results, especially in the case of the heat flux shock profile. We find that the accuracy gain is marginal at lower Mach numbers, while the shock profiles are described better using the modified theory for the case of strong shocks.


Sign in / Sign up

Export Citation Format

Share Document