scholarly journals The turbulent recirculating flow field in a coreless induction furnace, a comparison of theoretical predictions with measurements

1983 ◽  
Vol 133 ◽  
pp. 37-46 ◽  
Author(s):  
N. El-Kaddah ◽  
J. Szekely

A mathematical representation has been developed for the electromagnetic force field and the fluid-flow field in a coreless induction furnace. The fluid flow field was represented by writing the axisymmetric turbulent Navier–Stokes equations, containing the electromagnetic body-force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The k-ε model was employed for evaluating the turbulent viscosity, and the resultant differential equations were solved numerically.The theoretically predicted velocity fields were in reasonably good agreement with the experimental measurements reported by Hunt & Moore; furthermore, the agreement regarding the turbulence intensities was essentially quantitative. These results indicate the k-ε model does provide a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

1981 ◽  
Vol 9 ◽  
Author(s):  
N. El-Kaddah ◽  
J. Szekely

ABSTRACTA mathematical representation has been developed for the electromagnetic force field, the fluid flow field, the temperature field (and for transport controlled kinetics) in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier-Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically.The computed results were found to be in good agreement with measurements reported in the literature, regarding the lifting force and the average temperature of the specimen.


2016 ◽  
Vol 792 ◽  
pp. 5-35 ◽  
Author(s):  
Giuseppe A. Zampogna ◽  
Alessandro Bottaro

The interaction between a fluid flow and a transversely isotropic porous medium is described. A homogenized model is used to treat the flow field in the porous region, and different interface conditions, needed to match solutions at the boundary between the pure fluid and the porous regions, are evaluated. Two problems in different flow regimes (laminar and turbulent) are considered to validate the system, which includes inertia in the leading-order equations for the permeability tensor through a Oseen approximation. The components of the permeability, which characterize microscopically the porous medium and determine the flow field at the macroscopic scale, are reasonably well estimated by the theory, both in the laminar and the turbulent case. This is demonstrated by comparing the model’s results to both experimental measurements and direct numerical simulations of the Navier–Stokes equations which resolve the flow also through the pores of the medium.


2021 ◽  
Author(s):  
Takashi Hotta

Abstract The minimum entropy theorem of the several fields is well known, but there is no clear review that it shows the possibility of minimum entropy theorem mainly rules the general viscous fluid flow field. In this article, I define appropriately total external energy function and is resolved by variational method, and shows that stationary condition always satisfies the continuity and general Navier-Stokes equations. So on that condition, the minimum entropy theorem could decide directly the general viscous fluid flow field.


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


Author(s):  
Chunill Hah ◽  
Douglas C. Rabe ◽  
Thomas J. Sullivan ◽  
Aspi R. Wadia

The effects of circumferential distortions in inlet total pressure on the flow field in a low-aspect-ratio, high-speed, high-pressure-ratio, transonic compressor rotor are investigated in this paper. The flow field was studied experimentally and numerically with and without inlet total pressure distortion. Total pressure distortion was created by screens mounted upstream from the rotor inlet. Circumferential distortions of 8 periods per revolution were investigated at two different rotor speeds. The unsteady blade surface pressures were measured with miniature pressure transducers mounted in the blade. The flow fields with and without inlet total pressure distortion were analyzed numerically by solving steady and unsteady forms of the Reynolds-averaged Navier-Stokes equations. Steady three-dimensional viscous flow calculations were performed for the flow without inlet distortion while unsteady three-dimensional viscous flow calculations were used for the flow with inlet distortion. For the time-accurate calculation, circumferential and radial variations of the inlet total pressure were used as a time-dependent inflow boundary condition. A second-order implicit scheme was used for the time integration. The experimental measurements and the numerical analysis are highly complementary for this study because of the extreme complexity of the flow field. The current investigation shows that inlet flow distortions travel through the rotor blade passage and are convected into the following stator. At a high rotor speed where the flow is transonic, the passage shock was found to oscillate by as much as 20% of the blade chord, and very strong interactions between the unsteady passage shock and the blade boundary layer were observed. This interaction increases the effective blockage of the passage, resulting in an increased aerodynamic loss and a reduced stall margin. The strong interaction between the passage shock and the blade boundary layer increases the peak aerodynamic loss by about one percent.


Sign in / Sign up

Export Citation Format

Share Document