Free-surface effects on spin-up

1988 ◽  
Vol 187 ◽  
pp. 395-407 ◽  
Author(s):  
Ulf CederlÖf

The effects of a free surface on the spin-up of a homogeneous fluid are studied, both analytically and experimentally. The analysis is carried out in cylindrical geometry and shows that the spin-up process is strongly modified as the rotational Froude number F = 4ω2L2/gH becomes large. The dynamic effect of the free surface causes delayed response outside a sidewall boundary layer of thickness LF−½. The timescale in the slowly decaying core is larger than the usual spin-up time by a factor of order F. A set of laboratory experiments using a cylinder with a parabolic bottom were carried out in order to test the theory. Reasonable agreement is found in all the experiments except close to the centre where an interesting deviation was observed, especially in cases corresponding to smaller Froude numbers. The deviation consisted of an anticyclonic vortex at the centre. It is shown that this phenomenon might be explained by Lagrangian mean motion resulting from inertial oscillations. In fact, the analysis shows that this motion produces a singular vortex at the centre.

Author(s):  
G. C. Hocking ◽  
L. K. Forbes

AbstractThe problem of withdrawing water through a line sink from a region containing an homogeneous fluid beneath a free surface is considered. Assuming steady, irrotational flow of an ideal fluid, solutions with low Froude number containing a stagnation point on the free surface above the sink are sought using a series substitution method. The solutions are shown to exist for a value of the Froude number up to a critical value of about 1.4. No solutions of this type are found for Froude numbers greater than this value.


2020 ◽  
Vol 50 (5) ◽  
pp. 1245-1263 ◽  
Author(s):  
Craig D. McConnochie ◽  
Claudia Cenedese ◽  
Jim N. McElwaine

AbstractWe use laboratory experiments and theoretical modeling to investigate the surface expression of a subglacial discharge plume, as occurs at many fjords around Greenland. The experiments consider a fountain that is released vertically into a homogeneous fluid, adjacent either to a vertical or a sloping wall, that then spreads horizontally at the free surface before sinking back to the bottom. We present a model that separates the fountain into two separate regions: a vertical fountain and a horizontal, negatively buoyant jet. The model is compared to laboratory experiments that are conducted over a range of volume fluxes, density differences, and ambient fluid depths. It is shown that the nondimensionalized length, width, and aspect ratio of the surface expression are dependent on the Froude number, calculated at the start of the negatively buoyant jet. The model is applied to observations of the surface expression from a Greenland subglacial discharge plume. In the case where the discharge plume reaches the surface with negative buoyancy the model can be used to estimate the discharge properties at the base of the glacier.


1998 ◽  
Vol 120 (2) ◽  
pp. 354-362 ◽  
Author(s):  
Madhu Sreedhar ◽  
Fred Stern

Results are reported of a RANS simulation investigation on the prediction of turbulence-driven secondary flows at the free-surface juncture of a surface-piercing flat plate at low Froude numbers. The turbulence model combines a nonlinear eddy viscosity model and a modified version of a free-surface correction formula. The different elements of the model are combined and the model constants calibrated based on the premises that the anisotropy of the normal stresses is mainly responsible for the dynamics of the flow in the juncture region, and an accurate modeling of the normal-stress anisotropy as obtained from the data is a primary requirement for the successful prediction of the overall flow field. The predicted mean velocity, streamwise vorticity, turbulent kinetic energy, and other quantities at the juncture are then compared with data and analyzed with regard to findings of related studies. In agreement with the experimental observations, the simulated flow at large depths was essentially two-dimensional and displayed all the major features of zero pressure gradient boundary layer and wake, including the anisotropy of normal stresses in the near-wall region. In the boundary-layer free-surface juncture region, the major features of interest that were predicted include the generation of secondary flows and the thickening of the boundary layer near the free surface. In the wake free-surface juncture region, even though secondary flows and a thickening of the wake width near the free surface were predicted in accordance with the experimental observations, the overall comparison with the experiment was not as satisfactory as the boundary-layer juncture. This is partly due to the lack of a strong coherent flow structure in the wake juncture and the presence of possible wave effects in the wake in the experiments. An examination of the terms in the Reynolds-averaged streamwise vorticity equation reconfirmed the importance of the anisotropy of the normal Reynolds stresses in the production of streamwise vorticity. The free-surface wave elevations were negligible for the present model problem for the nonzero Froude number studied. Finally, concluding remarks are presented with regards to extensions for practical geometries such as surface ship flows.


2000 ◽  
Vol 406 ◽  
pp. 337-346 ◽  
Author(s):  
L. ENGEVIK

The instabilities of a free surface shear flow are considered, with special emphasis on the shear flow with the velocity profile U* = U*0sech2 (by*). This velocity profile, which is found to model very well the shear flow in the wake of a hydrofoil, has been focused on in previous studies, for instance by Dimas & Triantyfallou who made a purely numerical investigation of this problem, and by Longuet-Higgins who simplified the problem by approximating the velocity profile with a piecewise-linear profile to make it amenable to an analytical treatment. However, none has so far recognized that this problem in fact has a very simple solution which can be found analytically; that is, the stability boundaries, i.e. the boundaries between the stable and the unstable regions in the wavenumber (k)–Froude number (F)-plane, are given by simple algebraic equations in k and F. This applies also when surface tension is included. With no surface tension present there exist two distinct regimes of unstable waves for all values of the Froude number F > 0. If 0 < F [Lt ] 1, then one of the regimes is given by 0 < k < (1 − F2/6), the other by F−2 < k < 9F−2, which is a very extended region on the k-axis. When F [Gt ] 1 there is one small unstable region close to k = 0, i.e. 0 < k < 9/(4F2), the other unstable region being (3/2)1/2F−1 < k < 2 + 27/(8F2). When surface tension is included there may be one, two or even three distinct regimes of unstable modes depending on the value of the Froude number. For small F there is only one instability region, for intermediate values of F there are two regimes of unstable modes, and when F is large enough there are three distinct instability regions.


Author(s):  
Matthieu A. Andre ◽  
Philippe M. Bardet

Shear instabilities induced by the relaxation of laminar boundary layer at the free surface of a high speed liquid jet are investigated experimentally. Physical insights into these instabilities and the resulting capillary wave growth are gained by performing non-intrusive measurements of flow structure in the direct vicinity of the surface. The experimental results are a combination of surface visualization, planar laser induced fluorescence (PLIF), particle image velocimetry (PIV), and particle tracking velocimetry (PTV). They suggest that 2D spanwise vortices in the shear layer play a major role in these instabilities by triggering 2D waves on the free surface as predicted by linear stability analysis. These vortices, however, are found to travel at a different speed than the capillary waves they initially created resulting in interference with the waves and wave growth. A new experimental facility was built; it consists of a 20.3 × 146.mm rectangular water wall jet with Reynolds number based on channel depth between 3.13 × 104 to 1.65 × 105 and 115. to 264. based on boundary layer momentum thickness.


2018 ◽  
Vol 203 ◽  
pp. 01003
Author(s):  
Raidan Maqtan ◽  
Badronnisa Yusuf ◽  
Saiful Bahri Hamzah

many of the post tsunami field surveys which conducted by researchers revealed that, the failure due to scour at the landward toe of the seawall due to overtopping of tsunami wave forms one of the important types of coastal defence structures failure and constitutes one of the biggest threats to their structural performance. This study was intended to investigates the scour profile induced by tsunami bores at the landward toe of the vertical seawall and to discuss the effects of the parameters; tide level, incident bore Froude number Fb, incident bore height Hb, overtopping flow Froude number Fo, and overtopping flow depth Ho on the maximum scour depth induced at the landward toe of the seawall. A set of laboratory experiments were conducted at National Hydraulic Research Institute of Malaysia (NAHRIM) with the tichnique of dam break to generate the bore like tsunami. The experiments showed that the initial water level upstream of the seawall has a significant effect on the scour profile and there is a strong negative relationship exists with Froude number of the incident bore and a strong positive relationship exists with Froude number of the overtopping flow depth above the crest of the seawall.


2009 ◽  
Vol 25 (1) ◽  
pp. 129-136 ◽  
Author(s):  
C.-D. Jan ◽  
C.-J. Chang ◽  
J.-S. Lai ◽  
W.-D. Guo

AbstractThis paper presents the experimental results of the characteristics of hydraulic shock waves in an inclined chute contraction with consideration of the effects of sidewall deflection angle φ, bottom inclination angle θ and approach Froude number Fr0. Seventeen runs of laboratory experiments were conducted in the range of 27.45° ≤φ ≤ 40.17°, 6.22° ≤ θ ≤ 25.38° and 1.04 ≤ Fr0 ≤ 3.51. Based on the experimental data, three empirical dimensionless relations for the shock angle, maximum shockwave height, and corresponding position of maximum shockwave were obtained by regression analyses, respectively. These empirical relations would be useful for hydraulic engineers in designing chute contraction structures.


2021 ◽  
Vol 928 ◽  
Author(s):  
S. Michele ◽  
R. Stuhlmeier ◽  
A.G.L. Borthwick

We present a theoretical model of the temperature distribution in the boundary layer region close to the seabed. Using a perturbation expansion, multiple scales and similarity variables, we show how free-surface waves enhance heat transfer between seawater and a seabed with a solid, horizontal, smooth surface. Maximum heat exchange occurs at a fixed frequency depending on ocean depth, and does not increase monotonically with the length and phase speed of propagating free-surface waves. Close agreement is found between predictions by the analytical model and a finite-difference scheme. It is found that free-surface waves can substantially affect the spatial evolution of temperature in the seabed boundary layer. This suggests a need to extend existing models that neglect the effects of a wave field, especially in view of practical applications in engineering and oceanography.


Sign in / Sign up

Export Citation Format

Share Document