The Taylor–Saffman problem for a non-Newtonian liquid

1990 ◽  
Vol 220 ◽  
pp. 413-425 ◽  
Author(s):  
S. D. R. Wilson

The Taylor–Saffman problem concerns the fingering instability which develops when one liquid displaces another, more viscous, liquid in a porous medium, or equivalently for Newtonian liquids, in a Hele-Shaw cell. Recent experiments with Hele-Shaw cells using non-Newtonian liquids have shown striking qualitative differences in the fingering pattern, which for these systems branches repeatedly in a manner resembling the growth of a fractal. This paper is an attempt to provide the beginnings of a hydrodynamical theory of this instability by repeating the analysis of Taylor & Saffman using a more general constitutive model. In fact two models are considered; the Oldroyd ‘Fluid B’ model which exhibits elasticity but not shear thinning, and the Ostwald–de Waele power-law model with the opposite combination. Of the two, only the Oldroyd model shows qualitatively new effects, in the form of a kind of resonance which can produce sharply increasing (in fact unbounded) growth rates as the relaxation time of the fluid increases. This may be a partial explanation of the observations on polymer solutions; the similar behaviour reported for clay pastes and slurries is not explained by shear-thinning and may involve a finite yield stress, which is not incorporated into either of the models considered here.

1981 ◽  
Vol 46 (9) ◽  
pp. 2021-2031 ◽  
Author(s):  
Pavel Seichter

Velocity profiles and pumping capacity have been determined using a thermistor anemometer in a vessel equipped with a screw impeller. In region of the creeping flow of a Newtonian liquid, i.e. for Re <15, the dimensionless pumping capacity is dependent on the geometrical arrangement of the mixing system. The efficiency was assessed of individual configuration from the value energy criterion expressing the dimensionless power requirements for recirculation of a highly viscous liquid in a vessel equipped with a screw impeller.


2014 ◽  
Vol 79 (4) ◽  
pp. 457-468 ◽  
Author(s):  
Jaroslav Katona ◽  
Sandra Njaradi ◽  
Verica Sovilj ◽  
Lidija Petrovic ◽  
Brankica Marceta ◽  
...  

Rheological properties of mixtures of hydroxypropylmethyl cellulose (HPMC), a nonionic associative cellulose ether, and sodium dodecylsulfate (SDS), an anionic surfactant, were investigated by viscosity measurements performed at different shear rates (0.1-6000 s-1). HPMC/SDS mixtures containing different concentrations of SDS (CSDS=0.00-3.50 % w/w) and HPMC concentrations which corresponded to the overlap parameter c/c*=3, 6, and 12 were prepared. All HPMC/SDS mixtures were found to be shear-thinning when examined in a low-end-to mid-range of the applied shear rates. The degree of shear-thinning, n, and viscosity of the mixtures were influenced by composition of HPMC/SDS mixtures and HPMC-SDS complex formation. The changes in n ranged from values typical for highly shear thinning to almost perfectly Newtonian liquids, and were more pronounced as c/c* was increased from 3 to 6 and 12. A change in flow profile and a buildup of the first normal stress difference (N1) was observed in HPMC/SDS mixtures with c/c*=6 and 12 and CSDS 0.55-1.00 % and 0.55-2.50 %, respectively, when a critical shear rate, crit. was exceeded, suggesting that a shear-induced structure formation in the mixtures took place.


1978 ◽  
Vol 45 (1) ◽  
pp. 19-24 ◽  
Author(s):  
V. Narayanamurthy ◽  
P. K. Sarma

The dynamics of accelerating, laminar non-Newtonian falling liquid film is analytically solved taking into account the interfacial shear offered by the quiescent gas adjacent to the liquid film under adiabatic conditions of both the phases. The results indicate that the thickness of the liquid film for the assumed power law model of the shear deformation versus the shear stress is influenced by the index n, the modified form of (Fr/Re). The mathematical formulation of the present analysis enables to treat the problem as a general type from which the special case for Newtonian liquid films can be derived by equating the index in the power law to unity.


1982 ◽  
Vol 120 ◽  
pp. 245-266 ◽  
Author(s):  
Simon L. Goren ◽  
Moshe Gottlieb

A linearized stability analysis is carried out for the breakup of small-diameter liquid filaments of dilute polymer solutions into droplets. Oldroyd's 8-constant model expressed in a corotational reference frame is used as the rheological equation of state. The crucial idea in this theory is the recognition that the liquid may be subject to an unrelaxed axial tension due to its prior history. If the tension is zero, the present analysis predicts that jets of shear-thinning liquids are less stable than comparable jets of Newtonian liquids; this is in agreement with previous analyses. However, when the axial tension is not zero, and provided the stress relaxation time constant is sufficiently large, the new theory predicts that the axial elastic tension can be a significant stabilizing influence. With reasonable values for the tension and stress relaxation time the theory explains the great stability observed for jets of some shear- thinning, dilute polymer solutions. The theory explains why drops produced from jets of such liquids are larger than drops from corresponding Newtonian liquids. The theory also appears capable of explaining the sudden appearance of irregularly spaced bulges on jets after long distances of t,ravel with little amplification of disturbances.


2019 ◽  
Vol 877 ◽  
pp. 561-581 ◽  
Author(s):  
Moshe Favelukis

In this theoretical report we explore the deformation and stability of a power-law non-Newtonian slender drop embedded in a Newtonian liquid undergoing a nonlinear extensional creeping flow. The dimensionless parameters describing this problem are: the capillary number $(Ca\gg 1)$, the viscosity ratio $(\unicode[STIX]{x1D706}\ll 1)$, the power-law index $(n)$ and the nonlinear intensity of the flow $(|E|\ll 1)$. Asymptotic analytical solutions were obtained near the centre and close to the end of the drop suggesting that only Newtonian and shear thinning drops $(n\leqslant 1)$ with pointed ends are possible. We described the shape of the drop as a series expansion about the centre of the drop, and performed a stability analysis in order to distinguish between stable and unstable stationary states and to establish the breakup point. Our findings suggest: (i) shear thinning drops are less elongated than Newtonian drops, (ii) as non-Newtonian effects increase or as $n$ decreases, breakup becomes more difficult, and (iii) as the flow becomes more nonlinear, breakup is facilitated.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
J. David ◽  
P. Filip ◽  
A. A. Kharlamov

Almost all hitherto proposed empirical models used for characterization of shear viscosity of non-Newtonian liquids describe only its monotonous course. However, the onset of new materials is accompanied by more complicated characteristics of their behaviour including nonmonotonous course of shear viscosity. This feature is reflected not only in an existence of one extreme point (maximum or minimum), but also it can appear in both extreme points; that is, this shear viscosity initially exhibits shear thinning; after attaining a local minimum, it converts to shear thickening, and again after reaching a local maximum, it has a shear-thinning character. It is clear that, for an empirical description of this complex behaviour, a hitherto, used number of parameters (four, five) in classical monotonous models (such as Cross or Carreau-Yasuda) are no longer tenable. If more parameters are applied, there should be given an emphasis on a relatively simple algebraic form of the proposed models, unambiguity of the involved parameters, and their sound interpretation in the whole modelling. This contribution provides an overview of the existing empirical nonmonotonous models and proposes a new 10-parameter model including a demonstration of its flexibility using various experimental data.


2006 ◽  
Vol 84 (4) ◽  
pp. 273-287 ◽  
Author(s):  
Kristi E Holloway ◽  
John R Bruyn

We have performed numerical simulations of the flow of hot glycerine as it displaces colder, more viscous glycerine in a radial Hele–Shaw cell. We find that fingering occurs for sufficiently high inlet velocities and viscosity ratios. The wavelength of the instability is independent of inlet velocity and viscosity ratio, but depends weakly on cell width. The growth rate of the fingers is found to increase with inlet velocity and decrease with the cell width. We compare our results with those from experiments.PACS No.: 47.54.–r


Sign in / Sign up

Export Citation Format

Share Document