scholarly journals Rheological properties of hydroxypropylmethyl cellulose/sodium dodecylsulfate mixtures

2014 ◽  
Vol 79 (4) ◽  
pp. 457-468 ◽  
Author(s):  
Jaroslav Katona ◽  
Sandra Njaradi ◽  
Verica Sovilj ◽  
Lidija Petrovic ◽  
Brankica Marceta ◽  
...  

Rheological properties of mixtures of hydroxypropylmethyl cellulose (HPMC), a nonionic associative cellulose ether, and sodium dodecylsulfate (SDS), an anionic surfactant, were investigated by viscosity measurements performed at different shear rates (0.1-6000 s-1). HPMC/SDS mixtures containing different concentrations of SDS (CSDS=0.00-3.50 % w/w) and HPMC concentrations which corresponded to the overlap parameter c/c*=3, 6, and 12 were prepared. All HPMC/SDS mixtures were found to be shear-thinning when examined in a low-end-to mid-range of the applied shear rates. The degree of shear-thinning, n, and viscosity of the mixtures were influenced by composition of HPMC/SDS mixtures and HPMC-SDS complex formation. The changes in n ranged from values typical for highly shear thinning to almost perfectly Newtonian liquids, and were more pronounced as c/c* was increased from 3 to 6 and 12. A change in flow profile and a buildup of the first normal stress difference (N1) was observed in HPMC/SDS mixtures with c/c*=6 and 12 and CSDS 0.55-1.00 % and 0.55-2.50 %, respectively, when a critical shear rate, crit. was exceeded, suggesting that a shear-induced structure formation in the mixtures took place.

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Lionel Talley Fogang ◽  
Muhammad Shahzad Kamal ◽  
Mohamed Mahmoud

Abstract Viscosified acids are desired in several oilfield applications such as in acid diversion and acid fracturing operations. The study aimed to delineate the rheological properties of a novel amine type surfactant and viscosified acid-surfactant solutions. The steady shear and dynamic rheological properties were evaluated by varying the surfactant, acid, and salt concentration. Such a study is required to gauge the suitability of the viscosifying agent in acid stimulation jobs. The surfactant solutions without acid showed shear-thinning behavior, whereas those with acid showed a Newtonian plateau over a wide shear rate range before undergoing shear thinning. This means that over a wide shear rate range, the acid-surfactant solutions become independent of applied shear. At low shear rates, the viscosity of the surfactant was higher compared with the surfactant-acid solution. However, at high shear rates, the viscosity of the surfactant was lower compared with the viscosity of the surfactant-acid solution. There was an optimal salt concentration that improved the viscosity and elasticity of the acid-surfactant solutions. Thus, the rheology of the surfactant solution can be improved by adding both acid and salt. The elastic properties of acid-surfactant solutions were also better compared with the elastic properties of pure surfactant. The addition of acid improved the elastic properties of the surfactant solutions. Constant viscosity over a range of shear rate is a suitable application for acid fracturing operations in which the acid leak-off will be minimal due to the high viscosity. Also, brines in most of the carbonate formation consist of high loading of calcium chloride which was found to have a positive effect on the viscosity. Increasing the calcium chloride leads to an increase in viscosity, and then subsequently decreases the viscosity. This shows that the acid and salt concentration plays a role in modifying the rheological properties of the surfactant solutions.


2009 ◽  
Vol 419-420 ◽  
pp. 53-56
Author(s):  
Bao Yu Song ◽  
Qing Xiang Yang ◽  
Feng Zhang ◽  
Dai Zhong Su

The apparent viscosity of aircraft grease with different nano-particles content, temperature and shear rates were studied using a rotational viscometer. The rheological properties of two types of aircraft grease, the basic grease and the one with nano-particles additives, were investigated using a rheometer. The results indicated that the apparent viscosity increases with the increase of nanoparticle concentration with the given ratio of nano-particles added. It was also found that the grease with and without the nano-particles both have yield stresses and clear shear-thinning properties. The shear-thinning phenomenon of the grease containing nano-particles is more evident than that of the basic grease. The experimental results also reveal that the rheological characteristics of both types of grease fall in Herschel-Bulkley class, and the nano-particles have a significant influence on the rheological parameters. At the end, the rheology mechanism was discussed based on the entanglement and orientation theories.


2014 ◽  
Vol 71 (5) ◽  
pp. 685-690 ◽  
Author(s):  
Lasse Sørensen ◽  
Thomas Ruby Bentzen ◽  
Kristian Thaarup Skov

Liquids with non-Newtonian properties are presented in many engineering areas, as for example in membrane bioreactors where active sludge exhibits shear thinning properties. Therefore, the ability to determine the rheology's dependence on shear is important when optimising systems with such liquids. However, rheometers capable of determining the viscosity are often expensive and so a cheaper alternative is constructed with this exact capability. Using the principle of rotating rheometers, a low-cost rheometer was built to determine the rheology of Newtonian and non-Newtonian liquids. The general principles and background assumptions and the physics are described. The rheometer was calibrated by comparison with measurements conducted on a Brookfield viscometer for Newtonian liquids. For validation measurements on non-Newtonian liquids, xanthan gum solutions were made and compared with measurements on the Brookfield viscometer and with values from other sources. Furthermore, the effect of excluding the different shear rates in the system is discussed and good practice hereto is given.


SPE Journal ◽  
2020 ◽  
Vol 25 (05) ◽  
pp. 2341-2352 ◽  
Author(s):  
Weiqi Fu ◽  
Zhiyuan Wang ◽  
Baojiang Sun ◽  
Jianchun Xu ◽  
Litao Chen ◽  
...  

Summary Methane hydrate formation in a xanthan-gum (XG) solution is an important problem for drilling in a deepwater environment. It not only alters the rheology of the drilling fluid in the wellbore but increases the risks of a hydrate blockage in the blowout preventer. The current work is performing groups of experiments to investigate the rheology of the hydrate slurry under XG concentrations of 0.15, 0.2, 0.25, and 0.3%, shear rates from 10 to 480 s−1, and hydrate concentrations from 1.01 to 9.12%. The experimental results show that the hydrate slurry with XG additives exhibits an obvious shear-thinning behavior, which is because the XG solution has strong pseudoplastic characteristics, and the inner structures of the flocculated hydrate particles suspended in the hydrate slurry are broken up during the hydrate-slurry flow. The increase of hydrate concentrations in the hydrate slurry can reduce the non-Newtonian fluid index and make the rheology of the hydrate slurry become more shear-thinning. However, as the XG concentration increases in the hydrate slurry, the influence of the hydrate concentration on the rheology of the hydrate slurry gradually weakens. Empirical Herschel–Bulkley-type equations are developed to describe the rheology of the hydrate slurry with XG for the current experimental condition, considering the shear rate, hydrate concentration, and XG concentration. In the proposed equations, the non-Newtonian factor and the consistency factor are expressed as functions of XG concentration empirically. Correction Notice:The preprint version of this paper was modified from its original version to correct Figs. 8 and 9 and Eqs. 6 through 9 on page 7. Errata explaining the corrections are included below as Supporting Information.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 417
Author(s):  
Xingcong Lv ◽  
Xiaolong Hao ◽  
Rongxian Ou ◽  
Tao Liu ◽  
Chuigen Guo ◽  
...  

The rheological properties of wood–plastic composites (WPCs) with different wood fiber contents were investigated using a rotational rheometer under low shear rates. The flow field information was analyzed and simulated by Ansys Polyflow software. The results showed that the WPCs with different wood fiber contents behaved as typical power-law fluids. A higher wood fiber content increased the shear thinning ability and pseudoplasticity of the WPCs. The pressure, velocity, shear rate, and viscosity distributions of the WPC during extrusion could be predicted by computational fluid dynamics (CFD) Ansys Polyflow software to explore the effects of different components on the flow field of WPCs.


2019 ◽  
Vol 263 ◽  
pp. 69-76 ◽  
Author(s):  
Alireza Mohammad Karim ◽  
Wieslaw J. Suszynski ◽  
William B. Griffith ◽  
Saswati Pujari ◽  
Lorraine F. Francis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document