Multiple linear instability of layered stratified shear flow

1994 ◽  
Vol 258 ◽  
pp. 255-285 ◽  
Author(s):  
Colm-Cille P. Caulfield

We develop a simple model for the behaviour of an inviscid stratified shear flow with a thin mixed layer of intermediate fluid. We find that the flow is simultaneously unstable to oscillatory disturbances that are a generalization of those discussed by Holmboe (1962), purely unstable modes analogous to those considered by Taylor (1931), and a new type of oscillatory disturbance at large wavelength. The relative significance of these different types of instability depends on the ratio R of the depth of the intermediate layer to the depth of the shear layer. For small values of R, the new type of oscillatory wave has both the largest growthrate for given bulk Richardson number Ri0, and is also primarily unstable to disturbances propagating at an angle to the mean flow, i.e. such modes violate the conditions of Squire's theorem (1933), and thus the assumption of initial two dimensionality of such flows is invalid. For intermediate values of R, the Holmboe-type modes and the Taylor-types modes may have wavelengths and phase speeds conducive to the formation of a resonant triad over a wide range of Ri0. Thus the presence of an intermediate layer in a stratified shear flow markedly changes its stability properties.

1990 ◽  
Vol 112 (4) ◽  
pp. 376-385 ◽  
Author(s):  
W. H. Schofield ◽  
E. Logan

The mean flow field surrounding obstacles attached to a wall under a turbulent boundary layer is analyzed. The analysis concentrates on how major features of the flow are influenced by model geometry and the incident shear flow. Experimental data are analyzed in terms of nondimensionalized variables chosen on the basis that their effect on major flow features can be simply appreciated. The data are restricted to high Reynolds number shear layers thicker than the attached obstacle. The work shows that data from a wide range of flows can be collapsed if appropriate nondimensional scales are used.


1975 ◽  
Vol 71 (1) ◽  
pp. 89-104 ◽  
Author(s):  
R. J. Hartman

The linearized initial-value problem for a two-dimensional, unbounded, exponentially stratified, plane Couette flow is considered. The solution is used to evaluate the evolution of wave-packet perturbations to the mean flow for all Richardson numbers J > ¼, demonstrating that a consistent wave-packet approach to wave propagation in these flows is possible for all J > ¼. It is found that the vertical influence of a wave-packet perturbation is limited to a distance of order (J − ¼)½/k0, where k0 is the magnitude of the initial central wave vector. These results are used to clarify the J [gsim ] ¼ conclusions of an earlier treatment by Booker & Bretherton.


2017 ◽  
Vol 822 ◽  
pp. 327-341 ◽  
Author(s):  
W. D. Smyth ◽  
H. T. Pham ◽  
J. N. Moum ◽  
S. Sarkar

We describe a simple model for turbulence in a marginally unstable, forced, stratified shear flow. The model illustrates the essential physics of marginally unstable turbulence, in particular the tendency of the mean flow to fluctuate about the marginally unstable state. Fluctuations are modelled as an oscillatory interaction between the mean shear and the turbulence. The interaction is made quantitative using empirically established properties of stratified turbulence. The model also suggests a practical way to estimate both the mean kinetic energy of the turbulence and its viscous dissipation rate. Solutions compare favourably with observations of fluctuating ‘deep cycle’ turbulence in the equatorial oceans.


2009 ◽  
Vol 39 (7) ◽  
pp. 1685-1699
Author(s):  
Nathan Paldor ◽  
Yona Dvorkin ◽  
Eyal Heifetz

Abstract The linear instability of a piecewise uniform shear flow is classically formulated for nondivergent perturbations on a 2D barotropic mean flow with linear shear, bounded on both sides by semi-infinite half-planes where the mean flows are uniform. The problem remains unchanged on the f plane because for nondivergent perturbations the instability is driven by vorticity gradient at the edges of the inner, linear shear region, whereas the vorticity itself does not affect it. The instability of the unbounded case is recovered when the outer regions of uniform velocity are bounded, provided that these regions are at least twice as wide as the inner region of nonzero shear. The numerical calculations demonstrate that this simple scenario is greatly modified when the perturbations’ divergence and the variation of the mean height (which geostrophically balances the mean flow) are retained in the governing equations. Although a finite deformation radius exists on the shallow water f plane, the mean vorticity gradient that governs the instability in the nondivergent case remains unchanged, so it is not obvious how the instability is modified by the inclusion of divergence in the numerical solutions of the equations. The results here show that the longwave instability of nondivergent flows is recovered by the numerical solution for divergent flows only when the radius of deformation is at least one order of magnitude larger than the width of the inner uniform shear region. Nevertheless, even at this large radius of deformation both the amplitude of the velocity eigenfunction and the distribution of vorticity and divergence differ significantly from those of nondivergent perturbations and vary strongly in the cross-stream direction. Whereas for nondivergent flows the vorticity and divergence both have a delta-function structure located at the boundaries of the inner region, in divergent flows they are spread out and attain their maximum away from the boundaries (either in the inner region or in the outer regions) in some range of the mean shear. In contrast to nondivergent flows for which the mean shear is merely a multiplicative factor of the growth rates, in divergent flows new unstable modes exist for sufficiently large mean shear with no shortwave cutoff. This unstable mode is strongly affected by the sign of the mean shear (i.e., the sign of the mean relative vorticity).


2015 ◽  
Vol 112 (29) ◽  
pp. 8937-8941 ◽  
Author(s):  
Andrew J. Majda

Understanding the complexity of anisotropic turbulent processes over a wide range of spatiotemporal scales in engineering shear turbulence as well as climate atmosphere ocean science is a grand challenge of contemporary science with important societal impact. In such inhomogeneous turbulent dynamical systems there is a large dimensional phase space with a large dimension of unstable directions where a large-scale ensemble mean and the turbulent fluctuations exchange energy and strongly influence each other. These complex features strongly impact practical prediction and uncertainty quantification. A systematic energy conservation principle is developed here in a Theorem that precisely accounts for the statistical energy exchange between the mean flow and the related turbulent fluctuations. This statistical energy is a sum of the energy in the mean and the trace of the covariance of the fluctuating turbulence. This result applies to general inhomogeneous turbulent dynamical systems including the above applications. The Theorem involves an assessment of statistical symmetries for the nonlinear interactions and a self-contained treatment is presented below. Corollary 1 and Corollary 2 illustrate the power of the method with general closed differential equalities for the statistical energy in time either exactly or with upper and lower bounds, provided that the negative symmetric dissipation matrix is diagonal in a suitable basis. Implications of the energy principle for low-order closure modeling and automatic estimates for the single point variance are discussed below.


2017 ◽  
Vol 816 ◽  
pp. 352-380 ◽  
Author(s):  
Jin-Han Xie ◽  
Jacques Vanneste

Mountain-generated inertia–gravity waves (IGWs) affect the dynamics of both the atmosphere and the ocean through the mean force they exert as they interact with the flow. A key to this interaction is the presence of critical-level singularities or, when planetary rotation is taken into account, inertial-level singularities, where the Doppler-shifted wave frequency matches the local Coriolis frequency. We examine the role of the latter singularities by studying the steady wavepacket generated by a multiscale mountain in a rotating linear shear flow at low Rossby number. Using a combination of Wentzel–Kramers–Brillouin (WKB) and saddle-point approximations, we provide an explicit description of the form of the wavepacket, of the mean forcing it induces and of the mean-flow response. We identify two distinguished regimes of wave propagation: Regime I applies far enough from a dominant inertial level for the standard ray-tracing approximation to be valid; Regime II applies to a thin region where the wavepacket structure is controlled by the inertial-level singularities. The wave–mean-flow interaction is governed by the change in Eliassen–Palm (or pseudomomentum) flux. This change is localised in a thin inertial layer where the wavepacket takes a limiting form of that found in Regime II. We solve a quasi-geostrophic potential-vorticity equation forced by the divergence of the Eliassen–Palm flux to compute the wave-induced mean flow. Our results, obtained in an inviscid limit, show that the wavepacket reaches a large-but-finite distance downstream of the mountain (specifically, a distance of order$(k_{\ast }\unicode[STIX]{x1D6E5})^{1/2}\unicode[STIX]{x1D6E5}$, where$k_{\ast }^{-1}$and$\unicode[STIX]{x1D6E5}$measure the wave and envelope scales of the mountain) and extends horizontally over a similar scale.


1970 ◽  
Vol 43 (4) ◽  
pp. 801-811 ◽  
Author(s):  
R. Jordinson

Numerical space-amplified solutions of the Orr-Sommerfeld equation for the case of a boundary layer on a flat plate have been calculated for a wide range of values of frequency and Reynolds number. The mean flow is assumed to be parallel and given by the appropriate component of the Blasius solution. The results are presented in a form suitable for comparison with experiment and are also compared with calculations of earlier authors.


2012 ◽  
Vol 42 (4) ◽  
pp. 539-557 ◽  
Author(s):  
David P. Marshall ◽  
James R. Maddison ◽  
Pavel S. Berloff

Abstract A framework for parameterizing eddy potential vorticity fluxes is developed that is consistent with conservation of energy and momentum while retaining the symmetries of the original eddy flux. The framework involves rewriting the residual-mean eddy force, or equivalently the eddy potential vorticity flux, as the divergence of an eddy stress tensor. A norm of this tensor is bounded by the eddy energy, allowing the components of the stress tensor to be rewritten in terms of the eddy energy and nondimensional parameters describing the mean shape and orientation of the eddies. If a prognostic equation is solved for the eddy energy, the remaining unknowns are nondimensional and bounded in magnitude by unity. Moreover, these nondimensional geometric parameters have strong connections with classical stability theory. When applied to the Eady problem, it is shown that the new framework preserves the functional form of the Eady growth rate for linear instability. Moreover, in the limit in which Reynolds stresses are neglected, the framework reduces to a Gent and McWilliams type of eddy closure where the eddy diffusivity can be interpreted as the form proposed by Visbeck et al. Simulations of three-layer wind-driven gyres are used to diagnose the eddy shape and orientations in fully developed geostrophic turbulence. These fields are found to have large-scale structure that appears related to the structure of the mean flow. The eddy energy sets the magnitude of the eddy stress tensor and hence the eddy potential vorticity fluxes. Possible extensions of the framework to ensure potential vorticity is mixed on average are discussed.


2015 ◽  
Vol 774 ◽  
pp. 324-341 ◽  
Author(s):  
J. C. Vassilicos ◽  
J.-P. Laval ◽  
J.-M. Foucaut ◽  
M. Stanislas

The spectral model of Perryet al. (J. Fluid Mech., vol. 165, 1986, pp. 163–199) predicts that the integral length scale varies very slowly with distance to the wall in the intermediate layer. The only way for the integral length scale’s variation to be more realistic while keeping with the Townsend–Perry attached eddy spectrum is to add a new wavenumber range to the model at wavenumbers smaller than that spectrum. This necessary addition can also account for the high-Reynolds-number outer peak of the turbulent kinetic energy in the intermediate layer. An analytic expression is obtained for this outer peak in agreement with extremely high-Reynolds-number data by Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). Townsend’s (The Structure of Turbulent Shear Flows, 1976, Cambridge University Press) production–dissipation balance and the finding of Dallaset al. (Phys. Rev. E, vol. 80, 2009, 046306) that, in the intermediate layer, the eddy turnover time scales with skin friction velocity and distance to the wall implies that the logarithmic derivative of the mean flow has an outer peak at the same location as the turbulent kinetic energy. This is seen in the data of Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). The same approach also predicts that the logarithmic derivative of the mean flow has a logarithmic decay at distances to the wall larger than the position of the outer peak. This qualitative prediction is also supported by the aforementioned data.


Buildings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 84 ◽  
Author(s):  
Mariateresa Guadagnuolo ◽  
Marianna Aurilio ◽  
Andrea Basile ◽  
Giuseppe Faella

The assessment of the modulus of elasticity and compressive strength of masonry is a fundamental step in the seismic analysis of existing structures. In this paper, the representativeness of the values provided by flat-jack tests for tuff masonry is investigated through the analysis of a very large and homogeneous number of tests (635 double flat-jack tests). Data relate to existing buildings belonging to different historical and/or construction periods, located throughout the Campania region (Italy) in areas with different peculiarities. Results are compared with the values provided by Italian Building Code, containing ranges of the elastic modulus and compressive strength for different types of masonry. The values of flat-jack tests are then compared with laboratory tests available in the literature. Finally, comparisons with code equations are performed. It is shown that equations correlating the masonry compressive strength with the modulus of elasticity provide values larger than the mean of experimental data, whereas the equations correlating the masonry compressive strength with the strength of components provide lower values, if block and mortar strengths are varied within a probable and wide range.


Sign in / Sign up

Export Citation Format

Share Document