scholarly journals Low-frequency two-dimensional linear instability of plane detonation

1997 ◽  
Vol 340 ◽  
pp. 249-295 ◽  
Author(s):  
MARK SHORT ◽  
D. SCOTT STEWART

An analytical dispersion relation describing the linear stability of a plane detonation wave to low-frequency two-dimensional disturbances with arbitrary wavenumbers is derived using a normal mode approach and a combination of high activation energy and Newtonian limit asymptotics, where the ratio of specific heats γ→1. The reaction chemistry is characterized by one-step Arrhenius kinetics. The analysis assumes a large activation energy in the plane steady-state detonation wave and a characteristic linear disturbance wavelength which is longer than the fire-zone thickness. Newtonian limit asymptotics are employed to obtain a complete analytical description of the disturbance behaviour in the induction zone of the detonation wave. The analytical dispersion relation that is derived depends on the activation energy and exhibits favourable agreement with numerical solutions of the full linear stability problem for low-frequency one- and two-dimensional disturbances, even when the activation energy is only moderate. Moreover, the dispersion relation retains vitally important characteristics of the full problem such as the one-dimensional stability of the detonation wave to low-frequency disturbances for decreasing activation energies or increasing overdrives. When two-dimensional oscillatory disturbances are considered, the analytical dispersion relation predicts a monotonic increase in the disturbance growth rate with increasing wavenumber, until a maximum growth rate is reached at a finite wavenumber. Subsequently the growth rate decays with further increases in wavenumber until the detonation becomes stable to the two-dimensional disturbance. In addition, through a new detailed analysis of the behaviour of the perturbations near the fire front, the present analysis is found to be equally valid for detonation waves travelling at the Chapman–Jouguet velocity and for detonation waves which are overdriven. It is found that in contrast to the standard imposition of a radiation or piston condition on acoustic disturbances in the equilibrium zone for overdriven waves, a compatibility condition on the perturbation jump conditions across the fire zone must be satisfied for detonation waves propagating at the Chapman–Jouguet detonation velocity. An insight into the physical mechanisms of the one- and two-dimensional linear instability is also gained, and is found to involve an intricate coupling of acoustic and entropy wave propagation within the detonation wave.

2014 ◽  
Vol 33 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Alexander A. Charakhch'yan ◽  
Konstantin V. Khishchenko

AbstractThe one-dimensional problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with length 2H and density ρ0 ≤ 100ρs, where ρs is the fuel solid-state density at atmospheric pressure and temperature of 4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is 1019 W/cm2 and duration is 50 ps. A mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by α-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave, appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile along the spatial variable x and with a weak dependence of the thermodynamic functions of x occurs. An appropriate solution of the equations of hydrodynamics is found analytically up to an arbitrary constant, which can be chosen so that the analytical solution describes with good accuracy the numerical one. The gain with respect to the energy of neutrons G ≈ 200 at Hρ0 ≈ 1 g/cm2, and G > 2000 at Hρ0 ≈ 5 g/cm2. To evaluate the ignition energy Eig of cylindrical targets, the quasi-1D model, limiting trajectories of α-particles by a cylinder of a given radius, is suggested. The model reproduces the known theoretical dependence Eig ~ ρ0−2 and gives Eig = 160 kJ for ρ0 = 100ρs ≈ 22 g/cm3.


2011 ◽  
Vol 78 (2) ◽  
pp. 181-187 ◽  
Author(s):  
NITIN SHUKLA ◽  
A. STOCKEM ◽  
F. FIÚZA ◽  
L. O. SILVA

AbstractWe investigate the Weibel instability in counter-propagating electron–ion plasmas with focus on the ion contribution, considering a realistic mass ratio. A generalized dispersion relation is derived from the relativistic theory by assuming an initially anisotropic temperature, which is represented by a waterbag distribution in momentum space, which shows an enhanced growth rate due to ion response. Two-dimensional particle-in-cell simulations support the theoretical analysis, showing a further amplification of magnetic field on ion time scale. The effect of an initial anisotropic temperature is investigated showing that the growth rate is monotonously decreased if the transverse spread is increased. Nevertheless, the presence of ions generates that the instability can develop for significantly higher electron temperatures. Suppression of oblique mode is also explored by introducing a parallel velocity spread.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Alexander Lopato ◽  
Pavel Utkin

The work is dedicated to the numerical study of detonation wave initiation and propagation in the variable cross-section axisymmetric channel filled with the model hydrogen-air mixture. The channel models the large-scale device for the utilization of worn-out tires. Mathematical model is based on two-dimensional axisymmetric Euler equations supplemented by global chemical kinetics model. The finite volume computational algorithm of the second approximation order for the calculation of two-dimensional flows with detonation waves on fully unstructured grids with triangular cells is developed. Three geometrical configurations of the channel are investigated, each with its own degree of the divergence of the conical part of the channel from the point of view of the pressure from the detonation wave on the end wall of the channel. The problem in consideration relates to the problem of waste recycling in the devices based on the detonation combustion of the fuel.


1979 ◽  
Author(s):  
R. Kotitschke ◽  
J. Scharrer

F.VIII R:Ag was determined by quantitative immunelectrophoresis (I.E.) with a prefabricated system. The prefabricated system consists of a monospecific f.VIII rabbit antiserum in agarose on a plastic plate for the one and two dimensional immunelectrophoresis. The lognormal distribution of the f.VIII R:Ag concentration in the normal population was confirmed (for n=70 the f.VIII R:Ag in % of normal is = 95.4 ± 31.9). Among the normal population there was no significant difference between blood donors (one blood donation in 8 weeks; for n=43 the f.VIII R:Ag in % of normal is = 95.9 ± 34.0) and non blood donors (n=27;f.VIII R:Ag = 94.6 ± 28.4 %). The f.VIII R:Ag concentration in acute hepatitis B ranged from normal to raised values (for n=10, a factor of 1.8 times of normal was found) and was normal again after health recovery (n=10, the factor was 1.0). in chronic hepatitis the f.VIII R:Ag concentration was raised in the majority of the cases (for n=10, the factor was 3.8). Out of 22 carrier sera 20 showed reduced, 2 elevated levels of the f.VIII R:Ag concentration. in 5 sera no f.VIII R:Ag could be demonstrated. The f.VIII R:Ag concentration was normal for n=10, reduced for n=20 and elevated for n=6 in non A-non B hepatitis (n=36). Contrary to results found in the literature no difference in the electrophoretic mobility of the f.VIII R:Ag was found between hepatitis patients sera and normal sera.


2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


Author(s):  
S. M. FROLOV ◽  
◽  
V. I. ZVEGINTSEV ◽  
V. S. AKSENOV ◽  
I. V. BILERA ◽  
...  

The term "detonability" with respect to fuel-air mixtures (FAMs) implies the ability of a reactive mixture of a given composition to support the propagation of a stationary detonation wave in various thermodynamic and gasdynamic conditions. The detonability of FAMs, on the one hand, determines their explosion hazards during storage, transportation, and use in various sectors of the economy and, on the other hand, the possibility of their practical application in advanced energy-converting devices operating on detonative pressure gain combustion.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai-Fei Zhu ◽  
Xiao-Wei Sun ◽  
Ting Song ◽  
Xiao-Dong Wen ◽  
Xi-Xuan Liu ◽  
...  

AbstractIn view of the influence of variability of low-frequency noise frequency on noise prevention in real life, we present a novel two-dimensional tunable phononic crystal plate which is consisted of lead columns deposited in a silicone rubber plate with periodic holes and calculate its bandgap characteristics by finite element method. The low-frequency bandgap mechanism of the designed model is discussed simultaneously. Accordingly, the influence of geometric parameters of the phononic crystal plate on the bandgap characteristics is analyzed and the bandgap adjustability under prestretch strain is further studied. Results show that the new designed phononic crystal plate has lower bandgap starting frequency and wider bandwidth than the traditional single-sided structure, which is due to the coupling between the resonance mode of the scatterer and the long traveling wave in the matrix with the introduction of periodic holes. Applying prestretch strain to the matrix can realize active realtime control of low-frequency bandgap under slight deformation and broaden the low-frequency bandgap, which can be explained as the multiple bands tend to be flattened due to the localization degree of unit cell vibration increases with the rise of prestrain. The presented structure improves the realtime adjustability of sound isolation and vibration reduction frequency for phononic crystal in complex acoustic vibration environments.


Sign in / Sign up

Export Citation Format

Share Document