On the structure of bow waves on a ship model

1997 ◽  
Vol 346 ◽  
pp. 77-115 ◽  
Author(s):  
RONALD R. DONG ◽  
JOSEPH KATZ ◽  
THOMAS T. HUANG

Particle image velocitmetry (PIV) measurements and free-surface visualizations around a ship model focus on the flow within the attached liquid sheet, upstream of the point at which the bow wave separates from the model, the origin and structure of the bow wave and the flow downstream of the wave crest. The measurements are performed at Reynolds numbers ranging between 2.8×106 and 7.4×106 and Froude numbers between 0.17 and 0.45 (both are based on ship length L). Representative velocity and vorticity distributions at FrL=0.28 and FrL=0.45 demonstrate the characteristic structure of mild and steep waves, respectively. Very close to the bow the attached sheet is thin and quite unsteady. With increasing distance from the nose the sheet becomes thicker and its development involves considerable vorticity production. In the mild case this vorticity is originated at the free surface, whereas in the steep wave case, boundary layer separation occurs on the model, which also transports vorticity into the sheet. This vorticity and its associated induced lateral flow remain near the model downstream of the bow wave. By calculating the acceleration component tangent to the free surface of the sheet it is shown that the peaks in the near-surface vorticity appear in regions with high viscous flux of vorticity from the surface. Formation of a bow wave also involves considerable production of vorticity. Similar to two-dimensional breakers, the primary origin of this vorticity is at the toe of the breaker. However, unlike the two-dimensional cases, the region containing vorticity in the ship wave does not appear as an extended shear layer. Instead, this vorticity is convected out of the plane of the laser sheet in a series of distinct vortex filaments. The ship wave also has powerful counter-rotating vorticity concentrated near the wave crest that has been observed in two-dimensional waves, but not of the same strength. Breaking becomes weaker, i.e. there is less vorticity production, with increasing distance from the model, but it persists even at the ‘tail’ of the bow wave. The sites of vorticity entrainment of both signs are consistent with the computed near-surface acceleration. Estimates of the three-dimensional velocity distribution and head losses within the wave are also provided.

Author(s):  
Jianhua Wang ◽  
Zhen Ren ◽  
Decheng Wan

The KRISO container ship model is used for numerical simulations to investigate hydrodynamic performance under high speeds. Unsteady Reynolds-Averaged Navier-Stokes (URANS) and delayed detached eddy simulation (DDES) approaches are used to resolve the flow field around the ship model. High-resolution Volume of Fluid (VOF) technique in OpenFOAM is used to capture the free surface. The present work focuses on the wave-breaking phenomena of high-speed ships. To study the speed effects on the phenomenon of ship bow wave breaking, three different speeds, i.e., Fn = .26, .35, and .40, are investigated for a fixed ship model in calm water. Predicted resistance and wave patterns under Fn = .26 are validated with available experimental data, and a good agreement is achieved. The breaking wave phenomena can be observed from both URANS and DDES results for Froude numbers greater than .35. And the Fn = .40 case shows more violent breaking bow waves. The process of overturning and breaking of bow wave is more complex in the DDES results, and some small-scale free surface features are also captured. The predicted bow wave is compared with the experiment conducted at the China Ship Scientific Research Center. It shows that the DDES results are more accurate. Wave profiles and vorticity field at several cross sections are presented to illustrate the relationship between bow waves and vortices. It is found that the free surface vorticity dissipates quickly in the URANS simulation, which leads to the difference compared with the DDES results.


2011 ◽  
Vol 687 ◽  
pp. 540-570 ◽  
Author(s):  
Eric Maxeiner ◽  
Mostafa Shakeri ◽  
James H. Duncan

AbstractA mechanical two-dimensional wave maker with a flexible surface was used to create waves similar to those formed at the bow of a moving ship. Utilizing the two-dimensional plus time (2D + T) approximation, the wave maker was programmed so that its deformable wave board created a time sequence of shapes that simulated the line of intersection between one side of the hull of a slender ship model moving at constant speed and an imaginary vertical plane oriented normal to the ship model track. However, instead of simulating a particular ship hull, the wave maker was set to produce a parametric set of flat plate motions that represent components of typical bow shapes. The resulting surface waves were measured using a cinematic laser-induced fluorescence technique and the resulting wave profiles were analysed. A large variation of wave crest shapes was observed. An assortment of wave characteristics including the maximum contact point height, maximum wave height and plunging jet geometry were measured and related to the corresponding wave maker motion parameters. Despite the variety of wave maker motions and resulting wave crest shapes, it was observed that the gross parameters describing the wave, such as the maximum wave height, maximum contact point height and wave phase speed, correlate strongly with the wave maker velocity along the water line. Details of the crest shape at the moment of incipient breaking showed a stronger dependence on the initial acceleration of the wave board.


1994 ◽  
Vol 47 (6S) ◽  
pp. S166-S172 ◽  
Author(s):  
Sanjoy Banerjee

Fluid motion at flat, unsheared interfaces develops primarily due to impingement of coherent turbulent structures from the far field. On the other hand, when shear is imposed, alternating low-speed/high-speed regions are formed with ejection-sweep cycles qualitatively similar to those seen in wall turbulence. The transition to this “active” state depends on a shear rate non-dimensionalized by the Reynolds stress and dissipation rate. Turning back to the unsheared (or free) surface case, the bulk turbulence structures cause “upwellings” when they approach the interface. The regions between upwellings appear as stagnation lines on the surface plane—the surface-normal velocity being downwards. Whirlpool-like attached vortices also form at the edges of the upwellings. These attached vortices are remarkably persistent—the main annihilation mechanism being interaction with a subsequent upwelling. For situations where the surface patterns convect away from a region of turbulence generation, i.e. a decaying pattern, the attached vortices become the dominant structure since new upwellings and downdrafts are not formed. The attached vortices pair and decay in a manner such that the near-surface turbulence structure is essentially two-dimensional. Even in situations where turbulence generation occurs quite close to the free-surface, measures such as energy spectra indicate a quasi two-dimensional near-surface structure.


1989 ◽  
Vol 33 (04) ◽  
pp. 269-283
Author(s):  
Mark A. Grosenbaugh ◽  
Ronald W. Yeung

Flow near a blunt ship's bow is experimentally investigated by studying the flow in front of horizontal, surface-piercing cylinders. A bore-like structure develops at the bow of a cylinder when it is immersed in a uniform stream. Observations indicate that the leading edge of this bow wave coincides with a point at which the main flow separates from the free surface. Experimental measurements of the location of the wavefront and the slope of the free surface at the wavefront are in fair agreement with existing theoretical predictions. Power spectra of the time records of the bow-wave elevation show a characteristic oscillation frequency at Froude numbers above a critical value. The bow-wave oscillation is a function of the cross-sectional shape of the two-dimensional body, the draft, and, to a lesser extent, the flow velocity. The inception of the oscillation depends on the Reynolds number, but the characteristic frequency is governed by inertial and gravitational forces.


1989 ◽  
Vol 209 ◽  
pp. 57-75 ◽  
Author(s):  
Mark A. Grosenbaugh ◽  
Ronald W. Yeung

Unsteady free-surface flow at the bow of a steadily moving, two-dimensional body is solved using a modified Eulerian-Lagrangian technique. Lagrangian marker particles are distributed on both the free surface and the far-field boundary. The flow field corresponding to an inviscid, double-body solution is used for the initial condition. Solutions are obtained over a range of Froude numbers for bodies of three different shapes: a vertical step, a faired profile, and a bulbous bow. A transition Froude number exists at which the bow wave begins to overturn and break. The value of the transition Froude number depends on the bow shape. A stagnation point is observed to be present below the free surface during the initial stage of the wave formation. For flows occurring above the transition Froude number, the stagnation point remains trapped below the free surface as the wave overturns. Below the transition Froude number, the stagnation point rises to the surface as the crest of the transient bow wave moves upstream and away from the body.


2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Alex Doak ◽  
Jean-Marc Vanden-Broeck

AbstractThis paper concerns the flow of fluid exiting a two-dimensional pipe and impacting an infinite wedge. Where the flow leaves the pipe there is a free surface between the fluid and a passive gas. The model is a generalisation of both plane bubbles and flow impacting a flat plate. In the absence of gravity and surface tension, an exact free streamline solution is derived. We also construct two numerical schemes to compute solutions with the inclusion of surface tension and gravity. The first method involves mapping the flow to the lower half-plane, where an integral equation concerning only boundary values is derived. This integral equation is solved numerically. The second method involves conformally mapping the flow domain onto a unit disc in the s-plane. The unknowns are then expressed as a power series in s. The series is truncated, and the coefficients are solved numerically. The boundary integral method has the additional advantage that it allows for solutions with waves in the far-field, as discussed later. Good agreement between the two numerical methods and the exact free streamline solution provides a check on the numerical schemes.


Author(s):  
Didier Clamond

Steady two-dimensional surface capillary–gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties in the physical plane and introducing some transformations of the boundary conditions at the free surface, new exact relations and equations for the free surface only are derived. In particular, a physical plane counterpart of the Babenko equation is obtained. This article is part of the theme issue ‘Nonlinear water waves’.


Sign in / Sign up

Export Citation Format

Share Document