scholarly journals Ice-flow and mass changes of Lewis Glacier, Mount Kenya, East Africa, 1986–90: observations and modeling

1992 ◽  
Vol 38 (128) ◽  
pp. 36-42 ◽  
Author(s):  
Stefan Hastenrath

AbstractThe long-term monitoring of Lewis Glacier on Mount Kenya serves as a basis for the study of glacier evolution in response to climatic forcing through modeling of its ice flow and mass budget. Following up on an earlier modeling and prediction study to 1990, this paper examines the ice-mass and flow changes in relation to the net-balance conditions over 1986–90. A model experiment using as climatic forcing the observed 1978–86 vertical net-balance profile yielded a volume loss and slow down of ice flow more drastic than observed during 1986–90. The causes of this discrepancy were examined in successive model experiments. Realistic simulations of mass-budget and thickness changes over 1986–90 are obtained using as input the net-balance forcing for the same period rather than for the preceding 1978–86 interval, and approximate flow velocities. With the same net-balance forcing and a completely stagnant Lewis Glacier, the elimination of mass redistribution by ice flow acts to mitigate the loss of volume and thickness in the upper glacier, and to accentuate it in the lower glacier. Accordingly, the observed 1986–90 net-balance profile along with the 1990 ice-flow velocities provide suitable input for the modeling of Lewis Glacier changes to 1994. Under continuation of the 1986–90 climatic forcing, ice thinning ranging from less than 1 m in the upper glacier to more than 7 m in the lower glacier, and a total volume loss of order 57 × 104m3, are anticipated over the 1990–94 time interval.

1992 ◽  
Vol 38 (128) ◽  
pp. 36-42
Author(s):  
Stefan Hastenrath

AbstractThe long-term monitoring of Lewis Glacier on Mount Kenya serves as a basis for the study of glacier evolution in response to climatic forcing through modeling of its ice flow and mass budget. Following up on an earlier modeling and prediction study to 1990, this paper examines the ice-mass and flow changes in relation to the net-balance conditions over 1986–90. A model experiment using as climatic forcing the observed 1978–86 vertical net-balance profile yielded a volume loss and slow down of ice flow more drastic than observed during 1986–90. The causes of this discrepancy were examined in successive model experiments. Realistic simulations of mass-budget and thickness changes over 1986–90 are obtained using as input the net-balance forcing for the same period rather than for the preceding 1978–86 interval, and approximate flow velocities. With the same net-balance forcing and a completely stagnant Lewis Glacier, the elimination of mass redistribution by ice flow acts to mitigate the loss of volume and thickness in the upper glacier, and to accentuate it in the lower glacier. Accordingly, the observed 1986–90 net-balance profile along with the 1990 ice-flow velocities provide suitable input for the modeling of Lewis Glacier changes to 1994. Under continuation of the 1986–90 climatic forcing, ice thinning ranging from less than 1 m in the upper glacier to more than 7 m in the lower glacier, and a total volume loss of order 57 × 104 m3, are anticipated over the 1990–94 time interval.


2019 ◽  
Author(s):  
Martin Stocker-Waldhuber ◽  
Andrea Fischer ◽  
Kay Helfricht ◽  
Michael Kuhn

Abstract. Climatic forcing affects glacier mass balance and ice flow dynamics on different time scales, resulting in length changes. Mass Balance and length changes are operationally used for glacier monitoring, whereas only a few time series of glacier dynamics have been recorded. With more than 100 years of measurements of ice flow velocities at stakes and stone lines on Hintereisferner and more than 50 years on Kesselwandferner, annual velocity and glacier fluctuation records have similar lengths. Subseasonal variations of ice flow velocities have been measured on Gepatschferner and Taschachferner for nearly a decade. The ice flow velocities on Hintereisferner and especially on Kesselwandferner show great variations between advancing and retreating periods, with magnitudes increasing from the highest to the lowest stakes, making ice flow records at ablation stakes a very sensitive indicator of glacier state. Since the end of the latest glacier advances from the 1970s to the 1980s, the ice flow velocities have decreased continuously, a strong indicator of the negative mass balances of the glaciers in recent decades. The velocity data sets of the four glaciers are available at https://doi.pangaea.de/10.1594/PANGAEA.896741.


2018 ◽  
Author(s):  
Martin Stocker-Waldhuber ◽  
Andrea Fischer ◽  
Kay Helfricht ◽  
Michael Kuhn

Abstract. Climatic forcing affects glacier length changes, mass balance and ice flow dynamics on different time scales and also dependent on topography. The first two of these parameters are operationally used for glacier monitoring, whereas only a few time series of glacier dynamics exist with the potential to serve as long-term indicators of glacier response to climate change. With more than 100 years of measurements of ice flow velocities at stakes and stone lines on Hintereisferner (HEF) and more than 50 years on Kesselwandferner (KWF), records of annual velocity change are as long as records of glacier fluctuations. Interannual variations of ice flow velocities and shorter supporting interpretations of long-term records have been measured on Gepatschferner (GPF) and Taschachferner (TSF) for nearly 10 years. The ice flow velocities on Hintereisferner and especially on Kesselwandferner show great variations between advancing and retreating periods, with magnitudes increasing from the highest to the lowest stakes, making ice flow records at ablation stakes a very sensitive indicator of glacier state. Since the end of the latest glacier advances from the 1970s to the 1980s, the ice flow velocities have decreased continuously, a strong sign of the severe retreat of the glaciers in recent decades.


2019 ◽  
Vol 11 (2) ◽  
pp. 705-715 ◽  
Author(s):  
Martin Stocker-Waldhuber ◽  
Andrea Fischer ◽  
Kay Helfricht ◽  
Michael Kuhn

Abstract. Climatic forcing affects glacier mass balance, which causes changes in ice flow dynamics and glacier length changes on different timescales. Mass balance and length changes are operationally used for glacier monitoring, whereas only a few time series of glacier dynamics have been recorded. Here we present a unique dataset of yearly averaged ice flow velocity measurements at stakes and stone lines covering more than 100 years on Hintereisferner and more than 50 years on Kesselwandferner. Moreover, the dataset contains sub-seasonal variations in ice flow from Gepatschferner and Taschachferner covering almost 10 years. The ice flow velocities on Hintereisferner and (especially) on Kesselwandferner show great variation between advancing and retreating periods, with magnitudes increasing from the stakes at higher elevations to the lower-elevated stakes, making ice flow records at ablation stakes a very sensitive indicator of glacier state. Since the end of the latest glacier advances from the 1970s to the 1980s, the ice flow velocities have decreased continuously, a strong indicator of the negative mass balances of the glaciers in recent decades. The velocity datasets of the four glaciers are available at https://doi.org/10.1594/PANGAEA.896741.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evan Miles ◽  
Michael McCarthy ◽  
Amaury Dehecq ◽  
Marin Kneib ◽  
Stefan Fugger ◽  
...  

AbstractGlaciers in High Mountain Asia generate meltwater that supports the water needs of 250 million people, but current knowledge of annual accumulation and ablation is limited to sparse field measurements biased in location and glacier size. Here, we present altitudinally-resolved specific mass balances (surface, internal, and basal combined) for 5527 glaciers in High Mountain Asia for 2000–2016, derived by correcting observed glacier thinning patterns for mass redistribution due to ice flow. We find that 41% of glaciers accumulated mass over less than 20% of their area, and only 60% ± 10% of regional annual ablation was compensated by accumulation. Even without 21st century warming, 21% ± 1% of ice volume will be lost by 2100 due to current climatic-geometric imbalance, representing a reduction in glacier ablation into rivers of 28% ± 1%. The ablation of glaciers in the Himalayas and Tien Shan was mostly unsustainable and ice volume in these regions will reduce by at least 30% by 2100. The most important and vulnerable glacier-fed river basins (Amu Darya, Indus, Syr Darya, Tarim Interior) were supplied with >50% sustainable glacier ablation but will see long-term reductions in ice mass and glacier meltwater supply regardless of the Karakoram Anomaly.


2014 ◽  
Vol 60 (220) ◽  
pp. 233-244 ◽  
Author(s):  
Astrid Lambrecht ◽  
Christoph Mayer ◽  
Vladimir Aizen ◽  
Dana Floricioiu ◽  
Arzhan Surazakov

AbstractFedchenko glacier is by far the largest glacier in the Pamir, Tajikistan. Owing to early accurate mapping of the glacier it is possible to evaluate glacier changes over eight decades, which is an exceptionally long time period for this remote mountain region. During this time a total volume loss of 5 km3 was observed on the main trunk of the glacier, while the total area changed by only 1.4%. It is observed that the volume loss migrates from the lower parts of the glacier towards the upper ablation zone. The comparatively small change in area is a result of the supraglacial debris cover on the glacier tongue, which decouples the area loss from the volume loss to a considerable degree. The observed velocities of the glacier do not reflect the volume changes up to now because the interannual variability is larger than possible long-term changes so far. The intra-annual velocity distribution in the central ablation zone probably reflects the evolution of the basal drainage system. Based on ice thickness measurements and simple ice-dynamic assumptions, the total volume of Fedchenko glacier is 123.4 ± 8 km3.


1987 ◽  
Vol 33 (115) ◽  
pp. 315-318 ◽  
Author(s):  
Stefan Hastenrath

AbstractThe second 4 year phase of a long-term observation program on Lewis Glacier, Mount Kenya, was completed in March 1986. As for the 1978–82 interval, net-balance results at a stake network and repeated mapping of the ice-surface topography allowed assessment of the mass economy by both “glaciological” and “geodetic” methods.The general findings from the 1978–82 observations are confirmed: the vertical flow component is directed downward in the upper glacier, and upward in the lower glacier; surface lowering and negative net balance increase down-glacier; ice flow mitigates surface lowering by the negative net balance in the lower glacier, but enhances it in the upper glacier. However, the major difference between the 1982–86 and 1978–82 periods is the progressive slow-down of ice flow. This entails a reduction of mass redistribution, in consequence of which the surface lowering becomes increasingly dependent on thein-situnet balance. It is expected that this circumstance will simplify any inference on future glacier behavior.


2009 ◽  
Vol 55 (190) ◽  
pp. 339-344 ◽  
Author(s):  
G.H. Gudmundsson ◽  
A. Jenkins

AbstractSurface ice-flow velocities measured at stakes on Rutford Ice Stream, West Antarctica, covering a period of ∼25 years are analysed for evidence of temporal variations in flow. No indications of significant long-term changes in flow are found. Earlier observations have shown significant tidally related variations in flow speed. We conclude that temporal variability on Rutford Ice Stream, West Antarctica, appears limited to tidal periods of days and weeks, and weaker interannual variation, possibly related to long-period tides or seasonal effects, while long-term (decadal) changes in flow speed are either absent or smaller than ∼0.1% a−1.


1987 ◽  
Vol 33 (115) ◽  
pp. 315-318 ◽  
Author(s):  
Stefan Hastenrath

AbstractThe second 4 year phase of a long-term observation program on Lewis Glacier, Mount Kenya, was completed in March 1986. As for the 1978–82 interval, net-balance results at a stake network and repeated mapping of the ice-surface topography allowed assessment of the mass economy by both “glaciological” and “geodetic” methods.The general findings from the 1978–82 observations are confirmed: the vertical flow component is directed downward in the upper glacier, and upward in the lower glacier; surface lowering and negative net balance increase down-glacier; ice flow mitigates surface lowering by the negative net balance in the lower glacier, but enhances it in the upper glacier. However, the major difference between the 1982–86 and 1978–82 periods is the progressive slow-down of ice flow. This entails a reduction of mass redistribution, in consequence of which the surface lowering becomes increasingly dependent on the in-situ net balance. It is expected that this circumstance will simplify any inference on future glacier behavior.


2020 ◽  
Author(s):  
Harry Zekollari ◽  
Heiko Goelzer ◽  
Frank Pattyn ◽  
Bert Wouters ◽  
Stef Lhermitte

<p>Glaciers outside the two major ice sheets are key contributors to sea level rise, act as important sources of freshwater, and have great touristic value. To simulate the temporal evolution of these ice masses at regional- to global scale, simplified models are typically used that rely on volume scaling approximations or parameterizations based on observed glacier changes. These approaches rely on minimal data and are fast, but they do not account for mass redistribution through ice flow. More recently, efforts have been undertaken to represent ice dynamical processes in flowline models that can be applied at large spatial scales. These flowline approaches represent the mass transfer within a glacier in a more realistic way, but fail at reproducing the evolution of large glaciers, which are typically not confined by the local topography and do not have a pronounced elongated shape as represented in flowline models.</p><p>Here we present our first efforts to develop a 3D coupled surface mass balance – ice flow model that can be used to model the temporal evolution of an ensemble of glaciers. The main goal of such a model is to be able to simulate the temporal evolution of glaciers with distinct shapes and situated in various climatic regimes in an automated way. By relying on a 3D model architecture we aim to better represent processes crucial for glacier evolution, such as glacier calving and convergent flow from several tributaries. Here, we will present first tests with a prototype version of the model by reproducing steady state geometries of selected glaciers, and by simulating the evolution of these ice bodies under idealised forcing scenarios.</p>


Sign in / Sign up

Export Citation Format

Share Document