scholarly journals Health and sustainability of glaciers in High Mountain Asia

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evan Miles ◽  
Michael McCarthy ◽  
Amaury Dehecq ◽  
Marin Kneib ◽  
Stefan Fugger ◽  
...  

AbstractGlaciers in High Mountain Asia generate meltwater that supports the water needs of 250 million people, but current knowledge of annual accumulation and ablation is limited to sparse field measurements biased in location and glacier size. Here, we present altitudinally-resolved specific mass balances (surface, internal, and basal combined) for 5527 glaciers in High Mountain Asia for 2000–2016, derived by correcting observed glacier thinning patterns for mass redistribution due to ice flow. We find that 41% of glaciers accumulated mass over less than 20% of their area, and only 60% ± 10% of regional annual ablation was compensated by accumulation. Even without 21st century warming, 21% ± 1% of ice volume will be lost by 2100 due to current climatic-geometric imbalance, representing a reduction in glacier ablation into rivers of 28% ± 1%. The ablation of glaciers in the Himalayas and Tien Shan was mostly unsustainable and ice volume in these regions will reduce by at least 30% by 2100. The most important and vulnerable glacier-fed river basins (Amu Darya, Indus, Syr Darya, Tarim Interior) were supplied with >50% sustainable glacier ablation but will see long-term reductions in ice mass and glacier meltwater supply regardless of the Karakoram Anomaly.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Atanu Bhattacharya ◽  
Tobias Bolch ◽  
Kriti Mukherjee ◽  
Owen King ◽  
Brian Menounos ◽  
...  

AbstractKnowledge about the long-term response of High Mountain Asian glaciers to climatic variations is paramount because of their important role in sustaining Asian river flow. Here, a satellite-based time series of glacier mass balance for seven climatically different regions across High Mountain Asia since the 1960s shows that glacier mass loss rates have persistently increased at most sites. Regional glacier mass budgets ranged from −0.40 ± 0.07 m w.e.a−1 in Central and Northern Tien Shan to −0.06 ± 0.07 m w.e.a−1 in Eastern Pamir, with considerable temporal and spatial variability. Highest rates of mass loss occurred in Central Himalaya and Northern Tien Shan after 2015 and even in regions where glaciers were previously in balance with climate, such as Eastern Pamir, mass losses prevailed in recent years. An increase in summer temperature explains the long-term trend in mass loss and now appears to drive mass loss even in regions formerly sensitive to both temperature and precipitation.


1992 ◽  
Vol 38 (128) ◽  
pp. 36-42
Author(s):  
Stefan Hastenrath

AbstractThe long-term monitoring of Lewis Glacier on Mount Kenya serves as a basis for the study of glacier evolution in response to climatic forcing through modeling of its ice flow and mass budget. Following up on an earlier modeling and prediction study to 1990, this paper examines the ice-mass and flow changes in relation to the net-balance conditions over 1986–90. A model experiment using as climatic forcing the observed 1978–86 vertical net-balance profile yielded a volume loss and slow down of ice flow more drastic than observed during 1986–90. The causes of this discrepancy were examined in successive model experiments. Realistic simulations of mass-budget and thickness changes over 1986–90 are obtained using as input the net-balance forcing for the same period rather than for the preceding 1978–86 interval, and approximate flow velocities. With the same net-balance forcing and a completely stagnant Lewis Glacier, the elimination of mass redistribution by ice flow acts to mitigate the loss of volume and thickness in the upper glacier, and to accentuate it in the lower glacier. Accordingly, the observed 1986–90 net-balance profile along with the 1990 ice-flow velocities provide suitable input for the modeling of Lewis Glacier changes to 1994. Under continuation of the 1986–90 climatic forcing, ice thinning ranging from less than 1 m in the upper glacier to more than 7 m in the lower glacier, and a total volume loss of order 57 × 104 m3, are anticipated over the 1990–94 time interval.


1992 ◽  
Vol 38 (128) ◽  
pp. 36-42 ◽  
Author(s):  
Stefan Hastenrath

AbstractThe long-term monitoring of Lewis Glacier on Mount Kenya serves as a basis for the study of glacier evolution in response to climatic forcing through modeling of its ice flow and mass budget. Following up on an earlier modeling and prediction study to 1990, this paper examines the ice-mass and flow changes in relation to the net-balance conditions over 1986–90. A model experiment using as climatic forcing the observed 1978–86 vertical net-balance profile yielded a volume loss and slow down of ice flow more drastic than observed during 1986–90. The causes of this discrepancy were examined in successive model experiments. Realistic simulations of mass-budget and thickness changes over 1986–90 are obtained using as input the net-balance forcing for the same period rather than for the preceding 1978–86 interval, and approximate flow velocities. With the same net-balance forcing and a completely stagnant Lewis Glacier, the elimination of mass redistribution by ice flow acts to mitigate the loss of volume and thickness in the upper glacier, and to accentuate it in the lower glacier. Accordingly, the observed 1986–90 net-balance profile along with the 1990 ice-flow velocities provide suitable input for the modeling of Lewis Glacier changes to 1994. Under continuation of the 1986–90 climatic forcing, ice thinning ranging from less than 1 m in the upper glacier to more than 7 m in the lower glacier, and a total volume loss of order 57 × 104m3, are anticipated over the 1990–94 time interval.


2020 ◽  
Author(s):  
Chia-Hsin Tsai ◽  
Richard Walker ◽  
Simon Daout ◽  
Kanatbek Abdrakhmatov ◽  
Aidyn Mukambayev ◽  
...  

<p>Long-term and present-day crustal deformation in the northern Tien Shan is poorly known, but is a key to understanding the mode of lithospheric deformation deep within the continental interiors, as well as the hazards posed by the slow-moving intraplate faults. Driven by the India-Asia collision, the NW-SE strike-slip faults and the E-W range-front thrust faults in the interior of Tien Shan together accommodate about 15-20 mm/yr of shortening. Here we focus on the NW-SE striking Dzhungarian fault (DZF) and the E-W striking Lepsy fault (LPF), which are large oblique strike-slip faults bounding the Dzhungarian Alatau, northern Tien Shan. Two large historical earthquakes in ~1716 and 1812 (Mw 8) were recorded in this region, and clear fault traces as well as scarps are visible from satellite images along some of the main faults. However, their geometries, slip rates, mode of deformation, expected earthquake magnitudes and recurrence interval have not been studied in details. A previous study suggested that the LPF ruptured in a seismic event around 400 yrBP that might be the 1716 earthquake known from historical records. Offsets of over 15 m were found over a fault length of 120 km, indicating a magnitude in the range Mw 7.5-8.2. The slip to length ratio for the LPF is unusally high, suggesting either that faults in this region are capable of generating very large earthquakes for a given fault length, or that the rupture length is underestimated.</p><p>Using a combination of high-resolution digital elevation models (DEMs) and orthophotos from High Mountain Asia (NASA), Pleiades optical imagery (CNES), drone photos and multi-temporal interferometric synthetic-aperture radar (InSAR) from the Sentinel-1 satellites, we identify the geomorphic signatures and quantify the long-term and short-term strain accumulation along the faults. The ~400 km DZF shows evidence for relatively ‘fresh’ rupturing along much of its length. We calculate an average lateral slip per event of 9.9 m from offset stacking analysis, which underlines the potential future large earthquakes on this fault. The proximity of the DZF and LPF ruptures and equivalent level of preservation opens the possibility that they were formed in a single earthquake event, with a moment-magnitude greater than 8. We also present estimates of long-term and short-term rates of slip across the DZF in order to estimate average recurrence intervals and to build a kinematic model of the faulting in the Northern Tien Shan.</p>


1987 ◽  
Vol 33 (115) ◽  
pp. 315-318 ◽  
Author(s):  
Stefan Hastenrath

AbstractThe second 4 year phase of a long-term observation program on Lewis Glacier, Mount Kenya, was completed in March 1986. As for the 1978–82 interval, net-balance results at a stake network and repeated mapping of the ice-surface topography allowed assessment of the mass economy by both “glaciological” and “geodetic” methods.The general findings from the 1978–82 observations are confirmed: the vertical flow component is directed downward in the upper glacier, and upward in the lower glacier; surface lowering and negative net balance increase down-glacier; ice flow mitigates surface lowering by the negative net balance in the lower glacier, but enhances it in the upper glacier. However, the major difference between the 1982–86 and 1978–82 periods is the progressive slow-down of ice flow. This entails a reduction of mass redistribution, in consequence of which the surface lowering becomes increasingly dependent on thein-situnet balance. It is expected that this circumstance will simplify any inference on future glacier behavior.


2009 ◽  
Vol 50 (50) ◽  
pp. 135-140 ◽  
Author(s):  
Hallgeir Elvehøy ◽  
Miriam Jackson ◽  
Liss M. Andreassen

AbstractMass-balance measurements were initiated on Engabreen, an outlet glacier from the Svartisen ice cap, Norway, in 1970. The glacier boundary was defined based on where meltwater drained, as the interest in Engabreen was mainly hydrological. However, the apparent discrepancy between the calculated cumulative glacier mass balance since 1970 and changes in glacier geometry prompted a re-examination of the glacier boundary. The glaciological drainage boundary is defined by studying whether ice flow physically contributes to Engabreen tongue and corresponds to a glacier with an area of 27.2 km2, significantly smaller than that defined by the hydrological drainage boundary at 39.6 km2. This glaciological drainage boundary is here named the ice-flow perimeter. The area difference between this and the hydrological drainage boundary is largest for the altitudinal range 1300–1400ma.s.l. Generally, the ‘glaciological’ glacier is lower in mean altitude than the ‘hydrological’ glacier, and this affects the calculated specific mass balance. Using the glaciological boundary leads to reductions in mean annual winter and summer balance (when spatial differences are ignored) of 0.12 mw.e. (from 2.92 to 2.80mw.e.) and 0.15 mw.e. (from –2.32 to –2.47mw.e.), respectively. The reduction in mean net balance for the period 1970–2006 is 0.27mw.e. (from +0.59 to +0.32mw.e.) which is about 50% of the calculated mass surplus in this period. This illustrates that the choice of glacier outline can significantly influence the long-term cumulative mass balance and that results from outlet glaciers must be interpreted with care when used for regional estimates of glacier change.


1987 ◽  
Vol 33 (115) ◽  
pp. 315-318 ◽  
Author(s):  
Stefan Hastenrath

AbstractThe second 4 year phase of a long-term observation program on Lewis Glacier, Mount Kenya, was completed in March 1986. As for the 1978–82 interval, net-balance results at a stake network and repeated mapping of the ice-surface topography allowed assessment of the mass economy by both “glaciological” and “geodetic” methods.The general findings from the 1978–82 observations are confirmed: the vertical flow component is directed downward in the upper glacier, and upward in the lower glacier; surface lowering and negative net balance increase down-glacier; ice flow mitigates surface lowering by the negative net balance in the lower glacier, but enhances it in the upper glacier. However, the major difference between the 1982–86 and 1978–82 periods is the progressive slow-down of ice flow. This entails a reduction of mass redistribution, in consequence of which the surface lowering becomes increasingly dependent on the in-situ net balance. It is expected that this circumstance will simplify any inference on future glacier behavior.


2021 ◽  
pp. jnnp-2020-324005
Author(s):  
Klaus Fassbender ◽  
Fatma Merzou ◽  
Martin Lesmeister ◽  
Silke Walter ◽  
Iris Quasar Grunwald ◽  
...  

Since its first introduction in clinical practice in 2008, the concept of mobile stroke unit enabling prehospital stroke treatment has rapidly expanded worldwide. This review summarises current knowledge in this young field of stroke research, discussing topics such as benefits in reduction of delay before treatment, vascular imaging-based triage of patients with large-vessel occlusion in the field, differential blood pressure management or prehospital antagonisation of anticoagulants. However, before mobile stroke units can become routine, several questions remain to be answered. Current research, therefore, focuses on safety, long-term medical benefit, best setting and cost-efficiency as crucial determinants for the sustainability of this novel strategy of acute stroke management.


2021 ◽  
Vol 22 (3) ◽  
pp. 1201
Author(s):  
Hsuan Peng ◽  
Kazuhiro Shindo ◽  
Renée R. Donahue ◽  
Ahmed Abdel-Latif

Stem cell-based cardiac therapies have been extensively studied in recent years. However, the efficacy of cell delivery, engraftment, and differentiation post-transplant remain continuous challenges and represent opportunities to further refine our current strategies. Despite limited long-term cardiac retention, stem cell treatment leads to sustained cardiac benefit following myocardial infarction (MI). This review summarizes the current knowledge on stem cell based cardiac immunomodulation by highlighting the cellular and molecular mechanisms of different immune responses to mesenchymal stem cells (MSCs) and their secretory factors. This review also addresses the clinical evidence in the field.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1566
Author(s):  
Barbara Proença ◽  
Florian Ganthy ◽  
Richard Michalet ◽  
Aldo Sottolichio

Field measurements of bed elevation and related wave events were performed within a tidal marsh, on two cordgrass species, Spartina anglica (exotic) and Spartina maritima (native), in the Bay of Arcachon (SW France). Bed- and water-level time series were used to infer on the sediment behavior patterns from short to long term. A consistent response was found between the bed-level variation and the wave forcing, with erosion occurring during storms and accretion during low energy periods. Such behavior was observed within the two species, but the magnitude of bed-level variation was higher within the native than the exotic Spartina. These differences, in the order of millimeters, were explained by the opposite allocation of biomass of the two species. On the long term, the sedimentation/erosion patterns were dominated by episodic storm events. A general sediment deficit was observed on the site, suggested by an overall bed-level decrease registered within both species. However, further verification of within species variation needs to be considered when drawing conclusions. Despite possible qualitative limitations of the experimental design, due to single point survey, this work provides original and considerable field data to the understanding the different species ability to influence bed sediment stabilization and their potential to build marsh from the mudflat pioneer stage. Such information is valuable for coastal management in the context of global change.


Sign in / Sign up

Export Citation Format

Share Document