scholarly journals Sensitivity to climate change of the mass balance of glaciers in southern Norway

1993 ◽  
Vol 39 (133) ◽  
pp. 656-665 ◽  
Author(s):  
Tron Laumann ◽  
Niels Reeh

Abstract A degree-day model developed for parameterizing melt rates on the Greenland ice sheet is adapted to the climatic conditions on glaciers in southern Norway. The model is calibrated by means of observed average mass-balance-elevation relationships (1963–90) for three glaciers in a west-east transect in southern Norway and 30 year normals (1961–90) of temperature and precipitation observed at nearby climate stations. The calibration gives a surprisingly small variation of the model parameters (degree-day factors for snow-and ice-melt, and precipitation-elevation gradient) from one glacier to another. The derived values of the parameters are used to estimate the change of the mass-balance-elevation relationship for different climatic scenarios. The study indicates that a low-lying glacier in the maritime, high-precipitation environment near the Atlantic coast is more sensitive to both temperature and precipitation changes than the high elevated glaciers in the dry, more continental climate farther away from the coast. However, all of the glaciers studied will lose mass in a warmer climate, unless the warming is accompanied by a dramatic increase in the precipitation of 25–40% deg−1 warming.

1993 ◽  
Vol 39 (133) ◽  
pp. 656-665 ◽  
Author(s):  
Tron Laumann ◽  
Niels Reeh

AbstractA degree-day model developed for parameterizing melt rates on the Greenland ice sheet is adapted to the climatic conditions on glaciers in southern Norway. The model is calibrated by means of observed average mass-balance-elevation relationships (1963–90) for three glaciers in a west-east transect in southern Norway and 30 year normals (1961–90) of temperature and precipitation observed at nearby climate stations. The calibration gives a surprisingly small variation of the model parameters (degree-day factors for snow-and ice-melt, and precipitation-elevation gradient) from one glacier to another. The derived values of the parameters are used to estimate the change of the mass-balance-elevation relationship for different climatic scenarios. The study indicates that a low-lying glacier in the maritime, high-precipitation environment near the Atlantic coast is more sensitive to both temperature and precipitation changes than the high elevated glaciers in the dry, more continental climate farther away from the coast. However, all of the glaciers studied will lose mass in a warmer climate, unless the warming is accompanied by a dramatic increase in the precipitation of 25–40% deg−1 warming.


2015 ◽  
Vol 56 (70) ◽  
pp. 79-88 ◽  
Author(s):  
Markus Engelhardt ◽  
Thomas V. Schuler ◽  
Liss M. Andreassen

AbstractThis study evaluates sensitivities of glacier mass balance and runoff to both annual and monthly perturbations in air temperature and precipitation at four highly glacierized catchments: Engabreen in northern Norway and Ålfotbreen, Nigardsbreen and Storbreen, which are aligned along a west–east profile in southern Norway. The glacier mass-balance sensitivities to changes in annual air temperature range from 1.74 m w.e. K−1 for Ålfotbreen to 0.55 m w.e. K−1 for Storbreen, the most maritime and the most continental glaciers in this study, respectively. The runoff sensitivities of all catchments are 20–25% per degree temperature change and 6–18% for a 30% precipitation change. A seasonality of the sensitivities becomes apparent. With increasing continentality, the sensitivity of mass balance and runoff to temperature perturbations during summer increases, and the sensitivity of annual runoff to both temperature and precipitation perturbations is constricted towards changes during the ablation period. Comparing sensitivities in northern and southern Norway, as well as the variability across southern Norway, reveals that continentality influences sensitivities more than latitude does.


2018 ◽  
Author(s):  
Andreas Plach ◽  
Kerim H. Nisancioglu ◽  
Sébastien Le clec’h ◽  
Andreas Born ◽  
Petra M. Langebroek ◽  
...  

Abstract. Understanding the behavior of the Greenland ice sheet in a warmer climate, and particularly its surface mass balance (SMB), is important for assessing Greenland’s potential contribution to future sea level rise. The Eemian interglacial, the most recent warmer-than-present period in Earth’s history approximately 125 000 years ago, provides an analogue for a warm summer climate over Greenland. The Eemian is characterized by a positive Northern Hemisphere summer insolation anomaly, which introduces uncertainties in Eemian SMB when using positive degree day estimates. In this study, we use Eemian global and regional climate simulations in combination with three types of SMB models – a simple positive degree day, an intermediate complexity, and a full surface energy balance model – to evaluate the importance of regional climate and model complexity for estimates of Greenland SMB. We find that all SMB models perform well under the relatively cool pre-industrial and late Eemian. For the relatively warm early Eemian, the differences between SMB models are large which is associated with the representation of insolation in the respective models. For all simulated time slices there is a systematic difference between globally and regionally forced SMB models, due to the different representation of the regional climate over Greenland. We conclude that both the resolution of the simulated climate as well as the method used to estimate the SMB, are important for an accurate simulation of Greenland’s SMB. Whether model resolution or SMB method is most important depends on the climate state and in particular the prevailing insolation pattern. We suggest that future Eemian climate model inter-comparison studies are combined with different SMB models to quantify Eemian SMB uncertainty estimates.


1990 ◽  
Vol 14 ◽  
pp. 333-333
Author(s):  
David N. Collins

Parameterisation of relationships between climate and glacier mass balance is of considerable importance in understanding and modelling how temporal variability in climate affects the quantity of perennial snow and ice stored in glaciers, and the runoff from glacierised areas. Influences of year-to-year variations in air temperatures are pertinent in the absence of long records of measured energy balance and in view of predictions of future climate scenarios in terms of temperature. Measurements of temperature and precipitation from several stations in Alpine valleys in the Rhone basin, Wallis, Switzerland have been analysed to indicate trends in climate from 1930 to 1988. Actual measurements of mass balance of Griesgletscher, ablation calculated from runoff and net accumulation estimated from totalising rain gauges for Findelengletscher and Gornergletscher beginning in the late 1960s, and runoff from Aletschgletscher since 1930, were taken as annual glaciological responses to climatic variation. Variables to represent climatic elements and interactions between precipitation and temperature were selected according to degree of correlation with glacier response variables, and climate-glacier response relationships were assessed by multiple regression. Subsets of the data representing the coolest (1972–81) and warmest (1943–52) decades were also analysed to indicate whether relationships amongst climatic variables and between climate and mass balance remain the same under contrasting climatic conditions.Overall, mean summer air temperature variables for the months May through September and June through August provide the highest levels of explanation of variance of ablation and mass balance respectively (75–82%). Addition of a precipitation variable (winter, spring or summer) in multiple regression increases explanation to a maximum of 91%. Spring and summer precipitation variables are negatively correlated with ablation. Positive degree days and temperature-summer snow functions provide alternatives to temperature. Event-based analysis of the coolest and warmest years selected by rank order invokes high precipitation in May and low May-June temperatures and summer snowfall events as significant variables.Relationships between climatic variables indicate that warmer-than-average winters have higher precipitation, but at summer and annual time scales precipitation is slightly negatively associated with temperature. At the decadal level, warmer periods appear to be influenced by increased frequency of continental anticyclonic conditions, in an area subject to both maritime and continental influences. These analyses of climatic variables indicate that summer energy inputs dominate glacier mass balance. Relationships between precipitation and temperature are complex and were changeable during a fluctuation of about 1° over 40 years. Effects of a potentially warmer future on the form of precipitation in spring, summer and autumn are not clear, so estimates of changes of mass balance have been calculated for contrasting precipitation regimes.


2020 ◽  
Vol 66 (256) ◽  
pp. 175-187 ◽  
Author(s):  
David R. Rounce ◽  
Tushar Khurana ◽  
Margaret B. Short ◽  
Regine Hock ◽  
David E. Shean ◽  
...  

AbstractThe response of glaciers to climate change has major implications for sea-level change and water resources around the globe. Large-scale glacier evolution models are used to project glacier runoff and mass loss, but are constrained by limited observations, which result in models being over-parameterized. Recent systematic geodetic mass-balance observations provide an opportunity to improve the calibration of glacier evolution models. In this study, we develop a calibration scheme for a glacier evolution model using a Bayesian inverse model and geodetic mass-balance observations, which enable us to quantify model parameter uncertainty. The Bayesian model is applied to each glacier in High Mountain Asia using Markov chain Monte Carlo methods. After 10,000 steps, the chains generate a sufficient number of independent samples to estimate the properties of the model parameters from the joint posterior distribution. Their spatial distribution shows a clear orographic effect indicating the resolution of climate data is too coarse to resolve temperature and precipitation at high altitudes. Given the glacier evolution model is over-parameterized, particular attention is given to identifiability and the need for future work to integrate additional observations in order to better constrain the plausible sets of model parameters.


2016 ◽  
Vol 63 (237) ◽  
pp. 176-193 ◽  
Author(s):  
DAVID J. WILTON ◽  
AMY JOWETT ◽  
EDWARD HANNA ◽  
GRANT R. BIGG ◽  
MICHIEL R. VAN DEN BROEKE ◽  
...  

ABSTRACTWe show results from a positive degree-day (PDD) model of Greenland ice sheet (GrIS) surface mass balance (SMB), 1870–2012, forced with reanalysis data. The model includes an improved daily temperature parameterization as compared with a previous version and is run at 1 km rather than 5 km resolution. The improvements lead overall to higher SMB with the same forcing data. We also compare our model with results from two regional climate models (RCMs). While there is good qualitative agreement between our PDD model and the RCMs, it usually results in lower precipitation and lower runoff but approximately equivalent SMB: mean 1979–2012 SMB (± standard deviation), in Gt a−1, is 382 ± 78 in the PDD model, compared with 379 ± 101 and 425 ± 90 for the RCMs. Comparison with in situ SMB observations suggests that the RCMs may be more accurate than PDD at local level, in some areas, although the latter generally compares well. Dividing the GrIS into seven drainage basins we show that SMB has decreased sharply in all regions since 2000. Finally we show correlation between runoff close to two calving glaciers and either calving front retreat or calving flux, this being most noticeable from the mid-1990s.


2020 ◽  
Vol 12 (16) ◽  
pp. 2609
Author(s):  
Yaqiong Mu ◽  
Yanqiang Wei ◽  
Jinkui Wu ◽  
Yongjian Ding ◽  
Donghui Shangguan ◽  
...  

The melting of the polar ice caps is considered to be an essential factor for global sea-level rise and has received significant attention. Quantitative research on ice cap mass changes is critical in global climate change. In this study, GRACE JPL RL06 data under the Mascon scheme based on the dynamic method were used. Greenland, which is highly sensitive to climate change, was selected as the study area. Greenland was divided into six sub-research regions, according to its watersheds. The spatial–temporal mass changes were compared to corresponding temperature and precipitation statistics to analyze the relationship between changes in ice sheet mass and climate change. The results show that: (i) From February 2002 to September 2019, the rate of change in the Greenland Ice Sheet mass was about −263 ± 13 Gt yr−1 and the areas with the most substantial ice sheet loss and climate changes were concentrated in the western and southern parts of Greenland. (ii) The mass balance of the Greenland Ice Sheet during the study period was at a loss, and this was closely related to increasing trends in temperature and precipitation. (iii) In the coastal areas of western and southern Greenland, the rate of mass change has accelerated significantly, mainly because of climate change.


2014 ◽  
Vol 8 (2) ◽  
pp. 575-585 ◽  
Author(s):  
I. Rogozhina ◽  
D. Rau

Abstract. This study aims to demonstrate that the spatial and seasonal effects of daily temperature variability in positive degree-day (PDD) models play a decisive role in shaping the modeled surface mass balance (SMB) of continental-scale ice masses. Here we derive monthly fields of daily temperature standard deviation (SD) across Greenland from the ERA-40 (European Centre for Medium-Range Weather Forecasts 40 yr Reanalysis) reanalysis spanning from 1958 to 2001 and apply these fields to model recent surface responses of the Greenland Ice Sheet (GIS). Neither the climate data set analyzed nor in situ measurements taken in Greenland support the range of commonly used spatially and temporally uniform SD values (~ 5 °C). In this region, the SD distribution is highly inhomogeneous and characterized by low values during summer months (~ 1 to 2.5 °C) in areas where most surface melting occurs. As a result, existing SMB parameterizations using uniform, high SD values fail to capture both the spatial pattern and amplitude of the observed surface responses of the GIS. Using realistic SD values enables significant improvements in the modeled regional and total SMB with respect to existing estimates from recent satellite observations and the results of a high-resolution regional model. In addition, this resolves large uncertainties associated with other major parameters of a PDD model, namely degree-day factors. The model appears to be nearly insensitive to the choice of degree-day factors after adopting the realistic SD distribution.


2014 ◽  
Vol 8 (1) ◽  
pp. 1151-1189 ◽  
Author(s):  
R. Calov ◽  
A. Robinson ◽  
M. Perrette ◽  
A. Ganopolski

Abstract. In this paper, we propose a new sub-grid scale parameterization for the ice discharge into the ocean through outlet glaciers and inspect the role of different observational and palaeo constraints for the choice of an optimal set of model parameters. This parameterization was introduced into the polythermal ice-sheet model SICOPOLIS, which is coupled to the regional climate model of intermediate complexity REMBO. Using the coupled model, we performed large ensemble simulations over the last two glacial cycles. We exploit two major parameters: a melt parameter in the surface melt scheme of REMBO and an ice discharge parameter in our parameterization of ice discharge. Our constraints are the present-day Greenland ice sheet surface elevation, surface mass balance partition (ratio between ice discharge and total precipitation) and the Eemian interglacial elevation drop relative to present-day in the vicinity of the NEEM ice core. We show that the ice discharge parameterization enables us to simulate both the correct ice-sheet shape and mass balance partition at the same time without explicitly resolving the Greenland outlet glaciers. For model verification, we compare simulated total and sectoral ice discharge with those from other findings, including observations. For the model versions, which are inside the range of observational and palaeo constraints, our simulated Greenland ice sheet contribution to Eemian sea level rise relative to present-day amounts to 1.4 m on average (in the range of 0.6 and 2.5 m).


2005 ◽  
Vol 42 ◽  
pp. 90-94 ◽  
Author(s):  
J.E. Box

AbstractThe Polar MM5 mesoscale atmospheric model was run for 13 years (1991–2003) over Greenland at 24 km horizontal resolution (Box and others, 2004). The model physics were driven by satellite, station and weather-balloon observational data assimilation, i.e. European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. The analysis in this study focuses on the response of the surface mass balance to its primary controls: temperature and precipitation. The results indicate coherent spatial patterns of variability and statistically significant links with temperature and precipitation and the North Atlantic Oscillation. Precipitation trends have the same spatial pattern and sign as temperature, suggesting an association of precipitation and temperature variability. Increasing temperatures contribute to an increasing ablation trend and expansion of the ablation zone despite increasing accumulation trends. The Pinatubo (Philippines) volcanic cooling in the early 1990s enhances this apparent warming trend. Only in the northeast does precipitation appear to dominate the surface mass balance, where both temperature and precipitation have decreased. There is little evidence for a total ice-sheet surface mass-balance trend, although the meltwater runoff has a positive trend and, combined with iceberg discharge and basal melting estimates, suggests the ice sheet as a whole is in a state of net mass loss over this period.


Sign in / Sign up

Export Citation Format

Share Document