Induction of traps by Ostertagia ostertagi larvae, chlamydospore production and growth rate in the nematode-trapping fungus Duddingtonia flagrans

1996 ◽  
Vol 70 (4) ◽  
pp. 291-297 ◽  
Author(s):  
J. Grønvold ◽  
P. Nansen ◽  
S.A. Henriksen ◽  
M. Larsen ◽  
J. Wolstrup ◽  
...  

AbstractBiological control of parasitic nematodes of domestic animals can be achieved by feeding host animals chlamydospores of the nematode-trapping fungus Duddingtonia flagrans. In the host faeces, D. flagrans develop traps that may catch nematode larvae. In experiments on agar, D. flagrans had a growth rate between 15 and 60 mm/week at temperatures between 20 and 30°C. The presence of nematodes induces the fungus to produce traps. The rate of trap formation in D. flagrans has an optimum at 30°C, producing 700–800 traps/cm2/2 days, when induced by 20 nematodes/cm2 on agar. Approaching 10 and 35°C the ability to produce traps is gradually reduced. The response of chlamydospore production on agar to changes in temperature is the same as that for trap formation. On agar, at 10, 20 and 30°C D. flagrans loses its trap inducibility after 2–3 weeks. During the ageing process, increasing numbers of chlamydospores are produced up to a certain limit. The time for reaching maximum chlamydospore concentration coincided with the time for loss of induction potential. The implications of these results in relation to biological control in faeces are discussed.

Parasitologia ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 168-176
Author(s):  
Jackson Victor Araújo ◽  
Fabio Ribeiro Braga ◽  
Pedro Mendoza-de-Gives ◽  
Adolfo Paz-Silva ◽  
Vinícius Longo Ribeiro Vilela

This review describes the advances acquired and proven in the use of helminthophagous fungi in the control of gastrointestinal helminth parasites in domestic animals. Old and well-known premises about parasitic epidemiology and the factors that can interfere with the best performance of biological control are mentioned. Some of the most promising fungi are Duddingtonia flagrans from the predatory fungi group and Pochonia chamydosporia and Mucor circinelloides from the ovicidal fungi group. These fungi produce resistance spores called chlamidospores. Bioverm® and BioWorma®, based on the fungus D. flagrans, are available as commercial. Biotechnological products such as nanoparticles and obtaining primary and secondary metabolites have already been obtained from these fungi. Because they have different mechanisms of action, ovicidal and predatory fungi, when used together, can present a complementary and synergistic action in the biological control of helminths. Therefore, future research in the search for new formulations, the association of fungi from different groups, extraction of new molecules, and nanoparticles of these fungi in the control of helminths in various domestic animals are desired.


2020 ◽  
Vol 94 ◽  
Author(s):  
Ítalo Stoupa Vieira ◽  
Isabela de Castro Oliveira ◽  
Artur Kanadani Campos ◽  
Jackson Victor de Araújo

Abstract Variations in temperature can affect the development of nematophagous fungi, especially when they are used in the biological control of parasitic nematodes in the pastures where cattle are reared. The aim of this work was to evaluate the effects of temperature on the performance of nematophagous fungi in the biological control of bovine parasitic nematodes. The mycelial growth, chlamydospore production and nematicidal activity of Duddingtonia flagrans, Arthrobotrys cladodes and Pochonia chlamydosporia were evaluated at 15, 20, 25, 30 and 35°C. The fungal strains achieved mycelial growth, chlamydospore production and nematicidal activity on parasitic nematodes under all temperature conditions tested. The fungi showed higher growth at intermediate temperatures (20, 25 and 30°C) than at the extremes of 15 and 35°C. At 25 and 30°C, D. flagrans realized 96.8 and 94.5% nematicidal activity on bovine parasitic nematodes, respectively. Arthrobotrys cladodes effected nematicidal activity of 85.3 and 83.5%, at 20 and 25°C, respectively. At 20 and 30°C, P. chlamydosporia achieved nematicidal activity of 81.3 and 87.4%, respectively. The maximum chlamydospore production was reached at 20, 25 and 30°C for D. flagrans, at 20 and 25°C for A. cladodes and P. chlamydosporia. The results of this study demonstrated that the tested fungal strains of D. flagrans, A. cladodes and P. chlamydosporia, when used in the biological control of bovine parasitic nematodes, were not limited by in vitro temperature variations. Therefore, the use of these strains of fungi as biological control agents of parasitic nematodes is promising.


1993 ◽  
Vol 67 (1) ◽  
pp. 31-36 ◽  
Author(s):  
J. Grønvold ◽  
J. Wolstrup ◽  
M. Larsen ◽  
S. A. Henriksen ◽  
P. Nansen

AbstractThree nematode-trapping fungi, one Arthrobotrys oligospora and two Duddingtonia flagrans isolates, were fed to Ostertagia ostertagi-infected calves to test their ability to destroy larvae of this parasite in faeces and consequently to reduce the transmission of infective larvae to herbage. The fungi had previously been selected for their capability to pass the alimentary tract of cattle without losing growth and nematode-trapping potentials. Dung was collected from three calves each fed one of the three fungi and placed as 1-kg cow pats on a parasite-free grass plot together with control cow pats from a calf that was not given fungi. The cow pats contained comparable concentrations of parasite eggs. The two D. flagrans isolates were highly effective in that they reduced herbage larval infectivity by 74–85%. In contrast, A. oligospora did not show any effect in the present experiment. Field experiments will demonstrate if D. flagrans represents a potential organism for biological control of bovine gastrointestinal nematodes under practical agricultural management conditions.


2005 ◽  
Vol 79 (4) ◽  
pp. 315-319 ◽  
Author(s):  
J.B. Chauhan ◽  
P.K. Sanyal ◽  
R.B. Subramanian

AbstractAn in vitro study was carried out to determine efficacy of Indian isolates of the nematode-trapping fungi Arthrobotrys musiformis and Duddingtonia flagrans to capture infective larvae of Haemonchus contortus. These fungi have previously been screened and selected for their survival in the gastrointestinal tract of sheep without losing growth and nematode capturing potential. Following the feeding of chlamydospores of these two fungi alone or in combination in sheep experimentally infected with Haemonchus contortus, coprocultures were set up to enumerate the infective third stage larvae. The number of larvae captured from faeces of fungus-fed sheep was significantly higher compared with fungus-unfed controls irrespective of the fungus used. The fungal combination produced no antagonistic effect and thus can be used as efficiently as the fungi alone in the biological control of animal parasitic nematodes.


1973 ◽  
Vol 47 (1) ◽  
pp. 35-48 ◽  
Author(s):  
V. S. Pandey

Growth rate and activity of 10 nematode trapping fungi, (Hyphomycetes)—Arthrobotrys oligospora, Dactylaria brochopaga, D. gamsospora, D. polycephala, D. thaumasia, D. vermicola, Monacrosporium (Dactylella) bembicodes, M. {D.) cionopaga, M. {D.) ellipsospora, Trichothecium cystosporium—against the infective larvae of Ostertagia ostertagi and Trichostrongylus axei were studied. Species forming adhesive networks grew faster than the others. Species producing adhesive knobs, adhesive branches and constricting rings were, in general, slow growers.


Author(s):  
Mahfouz M. M. Abd-Elgawad

Abstract Background Potato represents Egypt’s largest vegetable export crop. Many plant-parasitic nematodes (PPNs) are globally inflicting damage to potato plants. In Egypt, their economic significance considerably varies according to PPN distribution, population levels, and pathogenicity. Main body This review article highlights the biology, ecology, and economic value of the PPN control viewpoint. The integration of biological control agents (BCAs), as sound and safe potato production practice, with other phytosanitary measures to manage PPNs is presented for sustainable agriculture. A few cases of BCA integration with such other options as synergistic/additive PPN management measures to upgrade crop yields are reviewed. Yet, various attributes of BCAs should better be grasped so that they can fit in at the emerging and/or existing integrated management strategies of potato pests. Conclusion A few inexpensive biocontrol products, for PPNs control on potato, versus their corresponding costly chemical nematicides are gathered and listed for consideration. Hence, raising awareness of farmers for making these biologicals familiar and easy to use will promote their wider application while offering safe and increased potato yield.


2015 ◽  
Vol 90 (6) ◽  
pp. 706-711 ◽  
Author(s):  
C.A. Saumell ◽  
A.S. Fernández ◽  
F. Echevarria ◽  
I. Gonçalves ◽  
L. Iglesias ◽  
...  

AbstractThe possible environmental effects of the massive use of Duddingtonia flagrans for controlling sheep nematodes were evaluated in two regions. Non-supplemented faeces and faeces from sheep supplemented with D. flagrans were deposited three times on pasture plots and samples were collected 7 and 14 days post-deposition. Samples were cultured in agar-water (2%) with Panagrellus spp. to recover D. flagrans and other nematophagous fungi, and soil nematodes were extracted using Baermann funnels and counted. No significant differences in the populations of soil nematodes and fungi colonizing sheep faeces (P > 0.05) were observed between supplemented and non-supplemented groups, except in one sample. The topsoil in contact with the faeces was sampled 1–4 months post-deposition, revealing that, with one exception, D. flagrans did not persist in soil beyond 2 months post-deposition. Duddingtonia flagrans does not affect faecal colonization by other fungi and soil nematodes and, once deployed on pasture, does not survive for long periods in the environment.


Sign in / Sign up

Export Citation Format

Share Document