Molecular and biochemical mining of heat-shock and 14-3-3 proteins in drug-induced protoscolices of Echinococcus granulosus and the detection of a candidate gene for anthelmintic resistance

2010 ◽  
Vol 85 (2) ◽  
pp. 196-203 ◽  
Author(s):  
D. Pan ◽  
S. Das ◽  
A.K. Bera ◽  
S. Bandyopadhyay ◽  
S. Bandyopadhyay ◽  
...  

AbstractCystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus is a disease that affects both humans and animals. In humans the disease is treated by surgery with a supplementary option of chemotherapy with a benzimidazole compound. During the present study heat-shock protein 60 (HSP 60) was identified as one of the most frequently expressed biomolecules by E. granulosus after albendazole treatment. Data were correlated with 14-3-3 protein signature, and overexpression of this molecule after albendazole induction was an indicator of cell survival and signal transduction during in vitro maintenance of E. granulosus for up to 72 h. This observation was further correlated with a uniform expression pattern of a housekeeping gene (actin II). Out of three β-tubulin gene isoforms of E. granulosus, β-tubulin gene isoform 2 showed a conserved point mutation indicative of benzimidazole resistance.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Pablo D. Jimenez Castro ◽  
Sue B. Howell ◽  
John J. Schaefer ◽  
Russell W. Avramenko ◽  
John S. Gilleard ◽  
...  

Abstract Background The canine hookworm, Ancylostoma caninum is the most prevalent and important intestinal nematode parasite of dogs in the USA. Hookworms are typically well controlled by treatment with all commonly used anthelmintics that are approved for this use in dogs. However, in the past few years, cases of recurrent/persistent canine hookworm infections appear to have dramatically increased, suggesting that anthelmintic resistance (AR) may have evolved in this parasite. These cases are highly overrepresented by greyhounds, but multiple other breeds are also represented. The aim of this study was to characterize several of these suspected resistant isolates using in vitro, genetic and clinical testing to determine if these cases represent true anthelmintic resistance in A. caninum. Methods Fecal samples containing hookworm eggs from three cases of persistent hookworm infections; one from a greyhound, one from a miniature schnauzer and one from a hound-mix, were received by our laboratory. These were then used to establish infections in laboratory dogs and to perform egg hatch assays (EHA) and larval development assays (LDA) for detecting resistance to benzimidazoles and macrocyclic lactones, respectively. Additional EHA and LDA were performed on eggs recovered from the laboratory-induced infections. Fecal egg count reduction tests were performed to detect resistance to pyrantel. Deep amplicon sequencing assays were developed to measure the frequency of non-synonymous single nucleotide polymorphisms (SNP) at codons 167, 198 and 200 of the A. caninum isotype-1 β-tubulin gene. Results Resistance ratios for the three A. caninum isolates tested ranged from 6.0 to > 100 and 5.5 to 69.8 for the EHA and LDA, respectively. Following treatment with pyrantel, reduction in faecal egg counts was negative or 0%. Deep amplicon sequencing of the isotype-1 β-tubulin gene identified a high frequency of resistance-associated SNPs at codon 167 in all three resistant isolates and in two additional clinical cases. Conclusions These data conclusively demonstrate multiple anthelmintic resistance in multiple independent isolates of A. caninum, strongly suggesting that this is an emerging problem in the USA. Furthermore, evidence suggest that these resistant hookworms originate from racing greyhound farms and kennels, though additional research is needed to confirm this.


2013 ◽  
Vol 57 (5) ◽  
pp. 77S
Author(s):  
Ali Navi ◽  
Rebekah Yu ◽  
Xu Shi-Wen ◽  
Sidney Shaw ◽  
George Hamilton ◽  
...  

2005 ◽  
Vol 391 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Renu Wadhwa ◽  
Syuichi Takano ◽  
Kamaljit Kaur ◽  
Satoshi Aida ◽  
Tomoko Yaguchi ◽  
...  

Mortalin/mtHsp70 (mitochondrial Hsp70) and HSP60 (heat-shock protein 60) are heat-shock proteins that reside in multiple subcellular compartments, with mitochondria being the predominant one. In the present study, we demonstrate that the two proteins interact both in vivo and in vitro, and that the N-terminal region of mortalin is involved in these interactions. Suppression of HSP60 expression by shRNA (short hairpin RNA) plasmids caused the growth arrest of cancer cells similar to that obtained by suppression of mortalin expression by ribozymes. An overexpression of mortalin, but not of HSP60, extended the in vitro lifespan of normal fibroblasts (TIG-1). Taken together, this study for the first time delineates: (i) molecular interactions of HSP60 with mortalin; (ii) their co- and exclusive localizations in vivo; (iii) their involvement in tumorigenesis; and (iv) their functional distinction in pathways involved in senescence.


2009 ◽  
Vol 77 (4) ◽  
pp. 1357-1367 ◽  
Author(s):  
Allan J. Guimarães ◽  
Susana Frases ◽  
Francisco J. Gomez ◽  
Rosely M. Zancopé-Oliveira ◽  
Joshua D. Nosanchuk

ABSTRACT Heat shock proteins with molecular masses of ∼60 kDa (Hsp60) are widely distributed in nature and are highly conserved immunogenic molecules that can function as molecular chaperones and enhance cellular survival under physiological stress conditions. The fungus Histoplasma capsulatum displays an Hsp60 on its cell surface that is a key target of the cellular immune response during histoplasmosis, and immunization with this protein is protective. However, the role of humoral responses to Hsp60 has not been fully elucidated. We generated immunoglobulin G (IgG) isotype monoclonal antibodies (MAbs) to H. capsulatum Hsp60. IgG1 and IgG2a MAbs significantly prolonged the survival of mice infected with H. capsulatum. An IgG2b MAb was not protective. The protective MAbs reduced intracellular fungal survival and increased phagolysosomal fusion of macrophages in vitro. Histological examination of infected mice showed that protective MAbs reduced the fungal burden and organ damage. Organs of infected animals treated with protective MAbs had significantly increased levels of interleukin-2 (IL-2), IL-12, and tumor necrosis factor alpha and decreased levels of IL-4 and IL-10. Hence, IgG1 and IgG2a MAbs to Hsp60 can modify H. capsulatum pathogenesis in part by altering the intracellular fate of the fungus and inducing the production of Th1-associated cytokines.


Parasite ◽  
2018 ◽  
Vol 25 ◽  
pp. 62 ◽  
Author(s):  
Congshan Liu ◽  
Jiaqing Yao ◽  
Jianhai Yin ◽  
Jian Xue ◽  
Haobing Zhang

Echinococcosis, which causes a high disease burden and is of great public health significance, is caused by the larval stage of Echinococcus species. It has been suggested that tubulin is the target of benzimidazoles, the only drugs for the treatment of echinococcosis. This study evaluated the characteristics of tubulins from Echinococcus granulosus. The full-length cDNAs of E. granulosus α- and β-tubulin isoforms were cloned by reverse transcription PCR from protoscolex RNA. Then, these two tubulin isoforms (α9 and β4) were recombinantly expressed as insoluble inclusion bodies in Escherichia coli. Nickel affinity chromatography was used to purify and refold the contents of these inclusion bodies as active proteins. The polymerization of tubulins was monitored by UV spectrophotometry (A350) and confirmed by confocal microscopy and transmission electron microscopy (TEM). Nucleotide sequence analysis revealed that E. granulosus 1356 bp α9-tubulin and 1332 bp β4-tubulin encode corresponding proteins of 451 and 443 amino acids. The average yields of α9- and β4-tubulin were 2.0–3.0 mg/L and 3.5–5.0 mg/L of culture, respectively. Moreover, recombinant α9- and β4-tubulin were capable of polymerizing into microtubule-like structures under appropriate conditions in vitro. These recombinant tubulins could be helpful for screening anti-Echinococcus compounds targeting the tubulins of E. granulosus.


2013 ◽  
Vol 89 (1) ◽  
pp. 80-85 ◽  
Author(s):  
E. Liébano-Hernández ◽  
M. González-Olvera ◽  
C. Vázquez-Peláez ◽  
P. Mendoza-de-Gives ◽  
G. Ramírez-Vargas ◽  
...  

AbstractBecause of the natural adaptation of Mexican sheep, the aim of the present study was to identify the presence or absence of gastrointestinal parasitic nematodes (GIN) resistant to benzimidazole (BZ) in both Chiapas and Pelibuey sheep breeds on local farms. Both male and female GIN-infected grazing sheep of the two breeds were selected. Sheep faecal samples were collected to obtain infective larvae (L3). This evolving stage of the parasite was used for taxonomic identification of the genus, based on its morphological characteristics. BZ anthelmintic resistance was evaluated using a nematode–compound in vitro interaction bioassay and the allele-specific polymerase chain reaction technique to detect mutations of residues 198 and 200 on isotype 1 of the β-tubulin gene. Three BZ-based compounds (febendazole (FBZ), tiabendazole (TBZ) and albendazole (ABZ)) at concentrations of 1, 0.5, 0.25, 0.125, 0.062 and 0.03 mg/ml were used to estimate the anthelmintic efficacy and lethal dose (LD50, LD90 and LD99) of the drugs. Two parasitic nematodes, Haemonchus and Teladorsagia, were identified in both isolates. Also, the proportions of anthelmintic resistance identified in GIN of the two sheep breeds were 68% in isolates from the Chiapas breed and 71.8% in the Pelibuey breed. The specific lethal activity obtained with FBZ was higher than 90%. However, TBZ and ABZ showed a lethal activity lower than 50%. High variability in the discriminating dose values was found among the BZ drugs. For example, FBZ LD ranged from 0.01 to 1.20 mg/ml; on the other hand, TBZ and ABZ required a dose ranging from 0.178 to 759 mg/ml. In addition, amino acid changes of Phe (TTC) to Tyr (TAC) at codon 200 of the β-tubulin gene, showing resistance to BZ, and no changes at codon 198 Glu (GAA) to Ala (GCA) were observed for both isolates. These results confirmed the presence of a genetic mutation associated with BZ in both Chiapas and Pelibuey nematode isolates.


2000 ◽  
Vol 20 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Boris-Wolfgang Hochleitner ◽  
Elisabeth-Olga Hochleitner ◽  
Peter Obrist ◽  
Thomas Eberl ◽  
Albert Amberger ◽  
...  

2012 ◽  
Vol 190 (3-4) ◽  
pp. 608-612 ◽  
Author(s):  
Simone Cristina Méo Niciura ◽  
Cecília José Veríssimo ◽  
Juliana Gracielle Gonzaga Gromboni ◽  
Marina Ibelli Pereira Rocha ◽  
Suelen Scarpa de Mello ◽  
...  

2012 ◽  
Vol 14 (7-8) ◽  
pp. 610-618 ◽  
Author(s):  
Vijayan Kamalakannan ◽  
Sreenivas Kirthika ◽  
Kalyanaraman Haripriya ◽  
Subash Babu ◽  
Rangarajan Badri Narayanan

2020 ◽  
Author(s):  
Deling Zhang ◽  
Hua Liu ◽  
Yemin Zhang ◽  
Junfeng Li ◽  
Yalin Fu ◽  
...  

Abstract Adiponectin, an adipokine produced and secreted by adipocytes, is involved in regulating the development and progression of insulin resistance, diabetes, and diabetic complications. Heat shock protein 60 (HSP60) is a molecular chaperone, most commonly presenting in mitochondria and participating in the maintenance of protein homeostasis. Accumulating studies have demonstrated that the elevated circulating HSP60 and the decreased intracellular HSP60 are closely associated with diabetic complications such as diabetic cardiomyopathy. However, the underlying mechanism remains poorly understood. In the present study, we reported that HSP60 interacted directly with adiponectin receptors. Its abundance was positively associated with adiponectin action. Furthermore, HSP60 depletion markedly mitigated the protective impacts of adiponectin on high glucose-induced oxidative stress and cell apoptosis in rat cardiac H9c2 cells. In addition, HSP60 knockdown significantly enhanced proteasome activity leading to the degradation of adiponectin receptor 1. Taken together, we showed for the first time that HSP60 interacted with adiponectin receptors and mediated adiponectin signaling through stabilizing adiponectin receptor. This in vitro study also provides an alternative explanation for mechanism by which adiponectin exerts its action.


Sign in / Sign up

Export Citation Format

Share Document