Testing albendazole resistance in Fasciola hepatica: validation of an egg hatch test with isolates from South America and the United Kingdom

2013 ◽  
Vol 88 (3) ◽  
pp. 286-292 ◽  
Author(s):  
J. Canevari ◽  
L. Ceballos ◽  
R. Sanabria ◽  
J. Romero ◽  
F. Olaechea ◽  
...  

AbstractThe main goal of the current work was to develop and validate an in vitro fluke egg hatch test, as a method for the detection of albendazole (ABZ) resistance in the liver fluke, Fasciola hepatica. Fluke eggs (200/ml, n= 5) from six different isolates were used in the current experimental work. They were obtained from different geographical locations and named Cullompton (UK), CEDIVE (Chascomus, Argentina), INTA-Bariloche (Bariloche, Argentina), Rubino (Uruguay), Cajamarca (Perú) and Río Chico (Catamarca, Argentina). The fluke eggs were incubated (25°C) for a 12-h period in the presence of either ABZ or its sulphoxide metabolite (ABZ.SO) (5, 0.5 or 0.05 nmol/ml). Untreated eggs were incubated as a control. Incubated eggs (with or without drug present) were kept in darkness at 25°C for 15 days. Afterwards, the trematode eggs were exposed to daylight over a 2-h period. Hatched and unhatched eggs were evaluated using an optical microscope, and the ovicidal activity was assessed for each fluke isolate. A very low ovicidal activity ( ≤ 13.4%) was observed in the ABZ-resistant CEDIVE isolate for both ABZ and ABZ.SO. Conversely, in the INTA-Bariloche and Río Chico isolates, which are suspected to be susceptible to ABZ, ovicidal activities ≥ 70.3% were observed after incubation with ABZ at the lowest concentration tested (0.05 nmol/ml). This finding correlates with that previously described for the ABZ-susceptible Cullompton. Finally, the Cajamarca and Rubino isolates behaved as ABZ resistant, since no ovicidal activity was observed after eggs were incubated with ABZ at 0.5 nmol/ml. Considering the specific results obtained for each isolate under assessment, the egg hatch test described here may be a suitable method for detection of ABZ resistance in F. hepatica.

2021 ◽  
Vol 120 (3) ◽  
pp. 979-991
Author(s):  
Rebekah B. Stuart ◽  
Suzanne Zwaanswijk ◽  
Neil D. MacKintosh ◽  
Boontarikaan Witikornkul ◽  
Peter M. Brophy ◽  
...  

AbstractFasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock industry and is re-emerging as a foodborne disease of humans. In the absence of vaccines, treatment control is by anthelmintics; with only triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and its detoxification by flukes might contribute to the mechanism. However, there is limited phase I capacity in adult parasitic helminths with the phase II detoxification system dominated by the soluble glutathione transferase (GST) superfamily. Previous proteomic studies have demonstrated that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-sulphoxide (TCBZ-SO) challenge during in vitro culture ex-host. We have extended this finding by exploiting a sub-proteomic lead strategy to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ-susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated differential abundance of FhGST-Mu29 and FhGST-Mu26 following affinity purification using both GSH and S-hexyl GSH affinity. Furthermore, a low or weak affinity matrix interacting Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a new low-affinity Mu class GST. Low-affinity GST isoforms within the GST-ome was not restricted to FhGST-Mu5 with a second likely low-affinity sigma class GST (FhGST-S2) uncovered. This study represents the most complete Fasciola GST-ome generated to date and has supported the potential of subproteomic analyses on individual adult flukes.


2022 ◽  
Author(s):  
Emily Robb ◽  
Erin McCammick ◽  
Duncan Wells ◽  
Paul McVeigh ◽  
Erica Gardiner ◽  
...  

Fasciola spp. liver fluke have significant impacts in veterinary and human medicine. The absence of a vaccine and increasing anthelmintic resistance threaten sustainable control and underscore the need for novel flukicides. Functional genomic approaches underpinned by in vitro culture of juvenile Fasciola hepatica facilitate control target validation in the most pathogenic life stage. Comparative transcriptomics of in vitro and in vivo maintained 21 day old F. hepatica finds that 86% of genes are expressed at similar levels across maintenance treatments suggesting commonality in core biological functioning within these juveniles. Phenotypic comparisons revealed higher cell proliferation and growth rates in the in vivo juveniles compared to their in vitro counterparts. These phenotypic differences were consistent with the upregulation of neoblast-like stem cell and cell-cycle associated genes in in vivo maintained worms. The more rapid growth/development of in vivo juveniles was further evidenced by a switch in cathepsin protease expression profiles, dominated by cathepsin B in in vitro juveniles and then by cathepsin L in in vivo juveniles. Coincident with more rapid growth/development was the marked downregulation of both classical and peptidergic neuronal signalling components in in vivo maintained juveniles, supporting a role for the nervous system in regulating liver fluke growth and development. Differences in the miRNA complements of in vivo and in vitro juveniles identified 31 differentially expressed miRNAs, notably fhe-let-7a-5p , fhe-mir-124-3p and, miRNAs predicted to target Wnt-signalling, supporting a key role for miRNAs in driving the growth/developmental differences in the in vitro and in vivo maintained juvenile liver fluke. Widespread differences in the expression of neuronal genes in juvenile fluke grown in vitro and in vivo expose significant interplay between neuronal signalling and the rate of growth/development, encouraging consideration of neuronal targets in efforts to dysregulate growth/development for parasite control.


Parasitology ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 589-603 ◽  
Author(s):  
J. KEISER

SUMMARYSchistosomiasis and food-borne trematodiases are chronic parasitic diseases affecting millions of people mostly in the developing world. Additional drugs should be developed as only few drugs are available for treatment and drug resistance might emerge. In vitro and in vivo whole parasite screens represent essential components of the trematodicidal drug discovery cascade. This review describes the current state-of-the-art of in vitro and in vivo screening systems of the blood fluke Schistosoma mansoni, the liver fluke Fasciola hepatica and the intestinal fluke Echinostoma caproni. Examples of in vitro and in vivo evaluation of compounds for activity are presented. To boost the discovery pipeline for these diseases there is a need to develop validated, robust high-throughput in vitro systems with simple readouts.


2016 ◽  
Vol 41 (2) ◽  
pp. 467-472 ◽  
Author(s):  
Mohammad Moazeni ◽  
Zahra Sadat Saadaty Ardakani ◽  
Mohammad Jamal Saharkhiz ◽  
Jafar Jalaei ◽  
Ali Asghar Khademolhoseini ◽  
...  

2020 ◽  
Author(s):  
Paul McCusker ◽  
Wasim Hussain ◽  
Paul McVeigh ◽  
Erin McCammick ◽  
Nathan G. Clarke ◽  
...  

AbstractFor over a decade RNA interference (RNAi) has been an important molecular tool for functional genomics studies in parasitic flatworms. Despite this, our understanding of RNAi dynamics in many flatworm parasites, such as the temperate liver fluke (Fasciola hepatica), remains rudimentary. The ability to maintain developing juvenile fluke in vitro provides the opportunity to perform functional studies during development of the key pathogenic life stage. Here, we investigate the RNAi competence of developing juvenile liver fluke. Firstly, all life stages examined possess, and express, core candidate RNAi effectors encouraging the hypothesis that all life stages of F. hepatica are RNAi competent. RNAi effector analyses supported growing evidence that parasitic flatworms have evolved a separate clade of RNAi effectors with unknown function. Secondly, we assessed the impact of growth / development during in vitro culture on RNAi in F. hepatica juveniles and found that during the first week post-excystment liver fluke juveniles exhibit quantitatively lower RNAi mediated transcript knockdown when maintained in growth inducing media. This did not appear to occur in older in vitro juveniles, suggesting that rapidly shifting transcript dynamics over the first week following excystment alters RNAi efficacy after a single 24 hour exposure to double stranded (ds)RNA. Finally, RNAi efficiency was found to be improved through use of a repeated dsRNA exposure methodology that has facilitated silencing of genes in a range of tissues, thereby increasing the utility of RNAi as a functional genomics tool in F. hepatica.


Parasitology ◽  
2019 ◽  
Vol 147 (3) ◽  
pp. 371-375 ◽  
Author(s):  
María Ornela Beltrame ◽  
Cesar Pruzzo ◽  
Rodrigo Sanabria ◽  
Alberto Pérez ◽  
Matías Sebastián Mora

AbstractIt is generally assumed that the digenean human liver fluke, Fasciola hepatica, gained entry to South America during the 15th century upon arrival of Europeans and their livestock. Nonetheless in Patagonia, Argentina, digenean eggs similar to F. hepatica have been observed in deer coprolites dating back to 2300 years B.P. The main objective of our present study was to identify and characterize these eggs using an ancient DNA (aDNA) study. Eggs were isolated and used for aDNA extraction, amplification and sequencing of partial regions from the cytochrome c oxidase subunit 1 and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 mitochondrial genes. Also, phylogenetic trees were constructed using Bayesian and maximum likelihood. Our results confirm the presence of F. hepatica in South America from at least 2300 years B.P. This is the first report and the first aDNA study of this trematode in South America prior to the arrival of the European cattle in the 15th century. The present work contributes to the study of phylogenetic and palaeobiogeographical aspects of F. hepatica and its settlement across America.


Sign in / Sign up

Export Citation Format

Share Document