scholarly journals A comparison of the antigens present on the surface of virus released artificially from chick cells infected with vaccinia virus, and cowpox virus and its white pock mutant

1972 ◽  
Vol 70 (2) ◽  
pp. 353-365 ◽  
Author(s):  
Derrick Baxby

SUMMARYAntisera prepared against vaccinia and cowpox viruses were absorbed with purified suspensions of vaccinia virus, red cowpox and white cowpox viruses. They were then tested for their ability to neutralize the viruses, and to precipitate the virus soluble antigens.The results showed that some virus specific antigens were not virus surface components and that some components were present on the surface of all three viruses. However, certain components were detected on the surface of vaccinia virus but not on the surface of cowpox virus, and vice versa. Some evidence for the existence of a vaccinia-specific surface component was also obtained.Comparisons between results of cross-neutralization tests and immunodiffusion tests on the absorbed sera indicated that antibody to a number of antigens, including the classical LS, and the cowpox-specificdantigen play no part in the process of poxvirus neutralization.

2008 ◽  
Vol 82 (24) ◽  
pp. 12384-12391 ◽  
Author(s):  
Amanda R. Howard ◽  
Tatiana G. Senkevich ◽  
Bernard Moss

ABSTRACT During vaccinia virus replication, mature virions (MVs) are wrapped with cellular membranes, transported to the periphery, and exported as extracellular virions (EVs) that mediate spread. The A26 protein is unusual in that it is present in MVs but not EVs. This distribution led to a proposal that A26 negatively regulates wrapping. A26 also has roles in the attachment of MVs to the cell surface and incorporation of MVs into proteinaceous A-type inclusions in some orthopoxvirus species. However, A26 lacks a transmembrane domain, and nothing is known regarding how it associates with the MV, regulates incorporation of the MV into inclusions, and possibly prevents EV formation. Here, we provide evidence that A26 forms a disulfide-bonded complex with A27 that is anchored to the MV through a noncovalent interaction with the A17 transmembrane protein. In the absence of A27, A26 was unstable, and only small amounts were detected. The interaction of A26 with A27 depended on a C-terminal segment of A26 with 45% amino acid identity to A27. Deletion of A26 failed to enhance EV formation by vaccinia virus, as had been predicted. Nevertheless, the interaction of A26 and A27 may have functional significance, since each is thought to mediate binding to cells through interaction with laminin and heparan sulfate, respectively. We also found that A26 formed a noncovalent complex with A25, a truncated form of the cowpox virus A-type inclusion matrix protein. The latter association suggests a mechanism for incorporation of virions into A-type inclusions in other orthopoxvirus strains.


1969 ◽  
Vol 4 (2) ◽  
pp. 499-525
Author(s):  
H. HARRIS ◽  
E. SIDEBOTTOM ◽  
D. M. GRACE ◽  
M. E. BRAMWELL

When the nucleus of a hen erythrocyte is introduced into the cytoplasm of a human or mouse cell in culture, it resumes the synthesis of RNA. The reactivated erythrocyte nucleus undergoes great enlargement, but it does not, for at least 2 or 3 days, develop nucleoli which can be discerned under the light microscope. During this period, the heterokaryon, although it may contain several active erythrocyte nuclei, does not synthesize any hen-specific surface antigens; and the hen-specific antigens introduced into the surface of the heterokaryon by the process of cell fusion are eliminated. But when, later, the erythrocyte nuclei do develop nucleoli, hen-specific antigens reappear on the surface of the heterokaryon and progressively accumulate. Before developing nucleoli, the erythrocyte nuclei synthesize little, if any, normal 28 S or 16 S RNA; but they do synthesize large amounts of the RNA which shows polydisperse sedimentation in conventional sucrose density gradients. Autoradiographic studies involving the use of a microbeam of ultraviolet light show, however, that this ‘polydisperse’ RNA is not transferred to the cytoplasm of the cell in detectable amounts so long as the erythrocyte nucleus lacks a definitive nucleolus. The inability of the erythrocyte nucleus at this stage to determine the synthesis of hen-specific surface antigens is thus attributable to the fact that it fails to transfer the RNA made on its chromosomes to the cytoplasm of the cell. When the erythrocyte nuclei develop nucleoli, however, the RNA which they make is transferred to the cytoplasm of the cell, and the synthesis of hen-specific surface antigens then begins. These experiments suggest that the nucleolus may play a decisive role in the transfer of information from nucleus to cytoplasm. The possible nature of this role is discussed.


Author(s):  
Geoffrey L. Smith

Poxviruses are large, complex DNA viruses that have played several seminal roles in medicine and biological science. Cowpox virus was introduced by Jenner as the first human vaccine in 1796; widespread vaccination with vaccinia virus led to the global eradication of smallpox in 1977, the only human disease to have been eradicated....


2008 ◽  
Vol 53 (2) ◽  
pp. 572-579 ◽  
Author(s):  
Earl R. Kern ◽  
Mark N. Prichard ◽  
Debra C. Quenelle ◽  
Kathy A. Keith ◽  
Kamal N. Tiwari ◽  
...  

ABSTRACT As part of a program to identify new compounds that have activity against orthopoxviruses, a number of 4′-thionucleosides were synthesized and evaluated for their efficacies against vaccinia and cowpox viruses. Seven compounds that were active at about 1 μM against both viruses in human cells but that did not have significant toxicity were identified. The 5-iodo analog, 1-(2-deoxy-4-thio-β-d-ribofuranosyl)-5-iodouracil (4′-thioIDU), was selected as a representative molecule; and this compound also inhibited viral DNA synthesis at less than 1 μM but only partially inhibited the replication of a recombinant vaccinia virus that lacked a thymidine kinase. This compound retained complete activity against cidofovir- and ST-246-resistant mutants. To determine if this analog had activity in an animal model, mice were infected intranasally with vaccinia or cowpox virus and treatment with 4′-thioIDU was given intraperitoneally or orally twice daily at 50, 15, 5, or 1.5 mg/kg of body weight beginning at 24 to 120 h postinfection and was continued for 5 days. Almost complete protection (87%) was observed when treatment with 1.5 mg/kg was begun at 72 h postinfection, and significant protection (73%) was still obtained when treatment with 5 mg/kg was initiated at 96 h. Virus titers in the liver, spleen, and kidney were reduced by about 4 log10 units and about 2 log10 units in mice infected with vaccinia virus and cowpox virus, respectively. These results indicate that 4′-thioIDU is a potent, nontoxic inhibitor of orthopoxvirus replication in cell culture and experimental animal infections and suggest that it may have potential for use in the treatment of orthopoxvirus infections in animals and humans.


2001 ◽  
Vol 75 (15) ◽  
pp. 7018-7029 ◽  
Author(s):  
Fernando Almazán ◽  
David C. Tscharke ◽  
Geoffrey L. Smith

ABSTRACT A characterization of the A45R gene from vaccinia virus (VV) strain Western Reserve is presented. The open reading frame is predicted to encode a 125-amino-acid protein (M r, of 13,600) with 39% amino acid identity to copper-zinc superoxide dismutase (Cu-Zn SOD). Sequencing of the A45R gene from other orthopoxviruses, here and by others, showed that the protein is highly conserved in all viruses sequenced, including 16 strains of VV, 2 strains of cowpox virus, camelpox virus, and 4 strains of variola virus. In all cases the protein lacks key residues involved in metal ion binding that are important for the catalytic activity. The A45R protein was expressed inEscherichia coli, purified, and tested for SOD activity, but neither enzymatic nor inhibitory SOD activity was detected. Additionally, no virus-encoded SOD activity was detected in infected cells or purified virions. A monoclonal antibody raised against the A45R protein expressed in E. coli identified the A45R gene product as a 13.5-kDa protein that is expressed late during VV infection. Confocal microscopy of VV-infected cells indicated that the A45R protein accumulated predominantly in cytoplasmic viral factories. Electron microscopy and biochemical analyses showed that the A45R protein is incorporated into the virion core. A deletion mutant lacking the majority of the A45R gene and a revertant virus in which the deleted gene was restored were constructed and characterized. The growth properties of the deletion mutant virus were indistinguishable from those of wild-type and revertant viruses in all cell lines tested, including macrophages. Additionally, the virulence and pathogenicity of the three viruses were also comparable in murine and rabbit models of infection. A45R is unusual in being the first VV core protein described that affects neither virus replication nor virulence.


2007 ◽  
Vol 51 (5) ◽  
pp. 1795-1803 ◽  
Author(s):  
Mark N. Prichard ◽  
Kathy A. Keith ◽  
Mary P. Johnson ◽  
Emma A. Harden ◽  
Alexis McBrayer ◽  
...  

ABSTRACT The antiviral activity of a new series of thymidine analogs was determined against vaccinia virus (VV), cowpox virus (CV), herpes simplex virus, and varicella-zoster virus. Several compounds were identified that had good activity against each of the viruses, including a set of novel 5-substituted deoxyuridine analogs. To investigate the possibility that these drugs might be phosphorylated preferentially by the viral thymidine kinase (TK) homologs, the antiviral activities of these compounds were also assessed using TK-deficient strains of some of these viruses. Some of these compounds were shown to be much less effective in the absence of a functional TK gene in CV, which was unexpected given the high degree of amino acid identity between this enzyme and its cellular homolog. This unanticipated result suggested that the CV TK was important in the mechanism of action of these compounds and also that it might phosphorylate a wider variety of substrates than other type II enzymes. To confirm these data, we expressed the VV TK and human TK1 in bacteria and isolated the purified enzymes. Enzymatic assays demonstrated that the viral TK could efficiently phosphorylate many of these compounds, whereas most of the compounds were very poor substrates for the cellular kinase, TK1. Thus, the specific phosphorylation of these compounds by the viral kinase may be sufficient to explain the TK dependence. This unexpected result suggests that selective phosphorylation by the viral kinase may be a promising new approach in the discovery of highly selective inhibitors of orthopoxvirus replication.


2003 ◽  
Vol 47 (7) ◽  
pp. 2193-2198 ◽  
Author(s):  
Kathy A. Keith ◽  
Michael J. M. Hitchcock ◽  
William A. Lee ◽  
Antonin Holý ◽  
Earl R. Kern

ABSTRACT In the event of a bioterrorism attack using smallpox virus, there currently is no approved drug for the treatment of infections with this virus. We have reported previously that (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC) (also known as cidofovir [CDV]) has good activity against poxvirus infections; however, a major limitation is the requirement for intravenous administration. Two related acyclic nucleoside phosphonates (ANPs), adefovir (PMEA) and tenofovir (PMPA), are active against human immunodeficiency virus or hepatitis B virus but do not have activity against the orthopoxviruses. Therefore, we have evaluated a number of analogs and potential oral prodrugs of these three compounds for their ability to inhibit the replication of vaccinia virus or cowpox virus in tissue culture cells. The most-active compounds within the CDV series were (S)-HPMPA and (butyl l-alaninyl) cyclic HPMPC, with 50% effective concentrations (EC50s) from 4 to 8 μM, compared with 33 to 43 μM for CDV. Although PMEA itself was not active, adefovir dipivoxil {bis[(pivaloyl)oxymethyl] PMEA} and bis(butyl l-alaninyl) PMEA were active against both viruses, and bis(butyl l-alaninyl) PME-N6-(cyclopropyl)DAP and (isopropyl l-alaninyl)phenyl PME-N6-(cyclopropyl)DAP were the most active compounds tested, with EC50s of 0.1 to 2.6 μM. In the PMPA series, none of the analogs tested had significantly better activity than PMPA itself. These data indicate that a number of these ANP derivatives have activity against vaccinia virus and cowpox virus in vitro and should be evaluated for their efficacies in animal models.


2006 ◽  
Vol 50 (7) ◽  
pp. 2525-2529 ◽  
Author(s):  
Ilya Lebeau ◽  
Graciela Andrei ◽  
Fabiana Dal Pozzo ◽  
James R. Beadle ◽  
Karl Y. Hostetler ◽  
...  

ABSTRACT The potencies of several alkoxyalkyl esters of acyclic nucleoside phosphonates against vaccinia virus and cowpox virus were evaluated in cell monolayers and three-dimensional epithelial raft cultures. Prodrugs were at least 20-fold more active than their parent compounds. Octadecycloxyethyl-(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine emerged as the most potent derivative.


2001 ◽  
Vol 82 (9) ◽  
pp. 2095-2105 ◽  
Author(s):  
Aylwin Ng ◽  
David C. Tscharke ◽  
Patrick C. Reading ◽  
Geoffrey L. Smith

Vaccinia virus (VV) gene A41L encodes an acidic protein with amino acid similarity to the 35 kDa protein of VV strain Lister, a soluble protein called vCKBP that binds CC chemokines, and to a protein from orf virus, called GIF, that binds GM-CSF and IL-2. However, despite the similarity, recombinant A41L protein was found not to bind these ligands or a variety of other chemoattractant molecules when tested using surface plasmon resonance. The A41L gene is expressed early and late during infection and encodes a 30 kDa protein that contains both N- and O-linked carbohydrate and is secreted from the infected cell. All 16 strains of VV and 2 strains of cowpox virus that were tested express the A41L protein, implying it has an important function for orthopoxviruses. Nonetheless, a VV strain Western Reserve deletion mutant lacking the A41L gene (vΔA41L) formed normal sized plaques and replicated to the same titre as wild-type and revertant viruses. The importance of the A41L protein in vivo was demonstrated in a mouse intradermal model in which infection with vΔA41L caused more severe lesions compared to wild-type and revertant viruses. Further examination in this model revealed that deletion of A41L enhanced clearance of infectious virus, suggesting that A41L expression reduces immunopathology. Consistent with this, histological examination of infected rabbit skin showed that the A41L protein could reduce the infiltration of inflammatory cells into the infected area. Together, these data suggest that the A41L protein constitutes a novel immunomodulatory protein.


2016 ◽  
Vol 61 (5) ◽  
pp. 200-204 ◽  
Author(s):  
S. V. Borisevich ◽  
S. S. Marennikova ◽  
L. F. Stovba ◽  
A. A. Petrov ◽  
V. T. Krotkov ◽  
...  

Buffalopox is a contagious viral disease affecting milch buffaloes (Bubalus Bubalis) and, rarely, cows. The disease has zoonotic implications, as outbreaks are frequently associated with human infections, particularly in the milkers. Buffalopox is associated with high morbidity (80%). The clinical symptoms of the disease are characterized by wartline lesions on the udder, teats, inguinal region, base of the ears, and over the parotid. In the severe form, generalized rash is observed. Although the disease does not lead to high mortality, it has an adverse effect on the productivity and working capacity of the animals resulting in large economic losses. The outbreaks of buffalopox occurred frequently in India, Pakistan, Bangladesh, Nepal, Iran, Egypt, and Indonesia, where buffaloes are reared as milch animals. The buffalopox is closely related with other Orthopoxviruses. In particular, it is close to the vaccinia virus. There is a view that the buffalopox virus might be derived from the vaccinia virus. It is possible that it became pathogenic to humans and animals through adaptive evolution of the genome by obtaining the virulence genes. PCR is performed for the C18L gene for the purpose of specific detection and differentiation of the buffalopox virus from other orthopoxviruses. The C18L gene encodes the ankyrin repeat protein, which determines the virus host range. The open reading frame of this gene is only 150-nucleotide long as against 453 nucleotide in the vaccinia virus, 756 - in the camelpox virus, and 759 - in the cowpox virus. It can be concluded that a systematic study based on the epidemiology of the virus, existence of reservoirs, biological transmission, and the molecular organization of the buffalopox virus from buffalo, cow, and humans may pave the way to a better understanding of the circulating virus and contribute to the control of the disease using the suitable diagnostic and prophylactic measures.


Sign in / Sign up

Export Citation Format

Share Document