Nonlinear coupling of two three-wave systems in plasma

1983 ◽  
Vol 30 (3) ◽  
pp. 345-357
Author(s):  
Shukla Basu (De) ◽  
R. K. Roychowdhury

The nonlinear interaction of two three-wave systems, including the possibility of negative energy waves in the presence of linear damping or growth and frequency mismatch, is investigated in a plasma, where one system of two transverse and one longitudinal wave interacts with a system of three longitudinal waves, and one of the longitudinal waves introduces coupling between the two subsystems. The solutions are analysed under various initial conditions and it is shown that, if one triplet be explosively unstable by itself, the presence of the second triplet can stabilize the solutions, depending on the relative strength of the coupling factor.

1979 ◽  
Vol 22 (2) ◽  
pp. 353-359 ◽  
Author(s):  
G. C. Pramanik

This paper considers nonlinear interaction between three monochromatic waves in a hot non-uniform electron plasma. With the aid of coupled mode theory the interaction of three longitudinal waves is studied and a specific case of the interaction of two longitudinal waves and one perpendicular wave is derived for the limiting case of long wavelength. Furthermore, the non-uniformity involves generalization of the theory of the interaction of two transverse waves and one longitudinal wave of a previous contribution.


1990 ◽  
Vol 45 (7) ◽  
pp. 839-846 ◽  
Author(s):  
D. Pfirsch

AbstractIn 1925 Cherry [1] discussed two oscillators of positive and negative energy that are nonlinearly coupled in a special way, and presented a class of exact solutions of the nonlinear equations showing explosive instability independent of the strength of the nonlinearity and the initial amplitudes. In this paper Cherry's Hamiltonian is transformed into a form which allows a simple physical interpretation. The new Hamiltonian is generalized to three nonlinearly coupled oscillators; it corresponds to three-wave interaction in a continuum theory, like the Vlasov-Maxwell theory, if there exist linear negative energy waves [2-4, 5, 6], Cherry was able to present a two-parameter solution set for his example which would, however, allow a four-parameter solution set, and, as a first result, an analogous three-parameter solution set for the resonant three-oscillator case is obtained here which, however, would allow a six-parameter solution set. Nonlinear instability is therefore proven so far only for a very small part of the phase space of the oscillators. This paper gives in addition the complete solution for the three-oscillator case and shows that, except for a singular case, all initial conditions, especially those with arbitrarily small amplitudes, lead to explosive behaviour. This is true of the resonant case. The non-resonant oscillators can sometimes also become explosively unstable, but the initial amplitudes must not be infinitesimally small. A few examples are presented for illustration.


2020 ◽  
pp. 2150103
Author(s):  
Hao Sui ◽  
Kesi Li ◽  
Zhenyu Zhu ◽  
Le Cheng ◽  
Xiaorong Gao ◽  
...  

To verify the performance of longitudinal waves induced by laser phased arrays (LPA) for detection and quantitative evaluation in internal defects, the finite element method (FEM) is utilized to establish the models of LPA scanning processing. The interaction of longitudinal wave and internal defect is analyzed. Besides, the two components of the reflected longitudinal waves (the longitudinal wave component [Formula: see text] and the shear wave component [Formula: see text] are focused on the imaging of defects with the synthetic aperture focusing technique (SAFT) and total focusing method (TFM) algorithms. It shows that the imaging of internal sub-millimeter defect is obtained using the LPA. The defect size and location are simultaneously calculated, with the relative error being 6.7% and 2.9%, respectively. The proposed longitudinal wave-based LPA is a promising method for the imaging and evaluation of internal micro defects.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2698
Author(s):  
Bo Zhu ◽  
Jaesun Lee

Nonlinear ultrasonic testing has been accepted as a promising manner for evaluating material integrity in an early stage. Stress fatigue is the main threats to train safety, railways examinations for stress fatigue are more significant and necessary. A series of ultrasonic nonlinear wave experiments are conducted for rail specimens extracted from railhead with different degree of fatigue produced by three-point bent loading condition. The nonlinear parameter is the indicator of nonlinear waves for expressing the degree the fatigue. The experimental results show that the sensitivity of a third harmonic longitudinal wave is higher than second harmonic longitudinal wave testing. As the same time, collinear wave mixing shows strong relative with fatigue damages than a second longitudinal wave nondestructive testing (NDT) method and provides more reliable results than third harmonic longitudinal waves nonlinear testing method.


2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Baljeet Singh

The governing equations for generalized thermoelasticity of a mixture of an elastic solid and a Newtonian fluid are formulated in the context of Lord-Shulman and Green-Lindsay theories of generalized thermoelasticity. These equations are solved to show the existence of three coupled longitudinal waves and two coupled transverse waves, which are dispersive in nature. Reflection from a thermally insulated stress-free surface is considered for incidence of coupled longitudinal wave. The speeds and reflection coefficients of plane waves are computed numerically for a particular model.


1978 ◽  
Vol 19 (3) ◽  
pp. 405-410 ◽  
Author(s):  
A. A. Selim

Quantum field theory is used to investigate the resonant nonlinear interaction between three longitudinal waves propagating at any arbitrary angle to a uniform magnetic field in a plasma. The coupled mode equations, coupling coefficient and a formula for the growth rates are derived.


2015 ◽  
Vol 362 ◽  
pp. 209-223 ◽  
Author(s):  
Ewa Majchrzak ◽  
Jolanta Dziatkiewicz ◽  
Łukasz Turchan

In the paper the selected problems related to the modeling of microscale heat transfer are presented. In particular, thermal processes occurring in thin metal films exposed to short-pulse laser are described by two-temperature hyperbolic model supplemented by appropriate boundary and initial conditions. Sensitivity analysis of electrons and phonons temperatures with respect to the microscopic parameters is discussed and also the inverse problems connected with the identification of relaxation times and coupling factor are presented. In the final part of the paper the examples of computations are shown.


Author(s):  
Bo Zhu ◽  
Jaesun Lee

Nonlinear ultrasonic testing has been accepted as a promising manner for evaluating material integrity in an early stage. Stress fatigue is the main threats to train safety, railways examinations for stress fatigue are more significant and necessary. A series of ultrasonic nonlinear wave experiments are conducted for rail specimens extracted from railhead with different degree of fatigue produced by three-point bent loading condition. The nonlinear parameter is the indicator of nonlinear waves for expressing the degree the fatigue. The experimental results show that the sensitivity of a third harmonic longitudinal wave is higher than second harmonic longitudinal wave testing. As the same time, collinear wave mixing shows strong relative with fatigue damages than a second longitudinal wave NDT method and provides more reliable results than third harmonic longitudinal waves nonlinear testing method.


Sign in / Sign up

Export Citation Format

Share Document