Thermal instability in a star—gas system

1995 ◽  
Vol 54 (2) ◽  
pp. 157-172 ◽  
Author(s):  
S. P. Talwar ◽  
M. P. Bora

A composite interstellar model consisting of stars and optically thin radiating plasma is considered in order to investigate the thermal instability arising from possible radiation and other heat-loss mechanisms. The stellar dynamics is governed by the Vlasov equation, while the gas is supposed to be a hydromagnetic plasma, described by the MHD equations, with a density- and temperature-dependent heat-loss function. It is shown that while with cold stars the system is in general unstable irrespective of thermal effects of the plasma, with warm stars having a Maxwellian distribution the thermal plasma considerably influences the stability of the composite system. It is also shown that the otherwise stable composite (with warm stars) configuration may become unstable in the presence of a radiating plasma because of coupling between the heat-loss mechanisms and stellar populations.

2007 ◽  
Vol 570 ◽  
pp. 1-16 ◽  
Author(s):  
JONATHAN J. WYLIE ◽  
HUAXIONG HUANG ◽  
ROBERT M. MIURA

We consider the stretching of a thin viscous thread, whose viscosity depends on temperature, that is heated by a radiative heat source. The thread is fed into an apparatus at a fixed speed and stretched by imposing a higher pulling speed at a fixed downstream location. We show that thermal effects lead to the surprising result that steady states exist for which the force required to stretch the thread can decrease when the pulling speed is increased. By considering the nature of the solutions, we show that a simple physical mechanism underlies this counterintuitive behaviour. We study the stability of steady-state solutions and show that a complicated sequence of bifurcations can arise. In particular, both oscillatory and non-oscillatory instabilities can occur in small isolated windows of the imposed pulling speed.


Author(s):  
Ramya Yeluri ◽  
Ravishankar Thirugnanasambandam ◽  
Cameron Wagner ◽  
Jonathan Urtecho ◽  
Jan M. Neirynck

Abstract Laser voltage probing (LVP) has been extensively used for fault isolation over the last decade; however fault isolation in practice primarily relies on good-to-bad comparisons. In the case of complex logic failures at advanced technology nodes, understanding the components of the measured data can improve accuracy and speed of fault isolation. This work demonstrates the use of second harmonic and thermal effects of LVP to improve fault isolation with specific examples. In the first case, second harmonic frequency is used to identify duty cycle degradation. Monitoring the relative amplitude of the second harmonic helps identify minute deviations in the duty cycle with a scan over a region, as opposed to collecting multiple high resolution waveforms at each node. This can be used to identify timing degradation such as signal slope variation as well. In the second example, identifying abnormal data at the failing device as temperature dependent effect helps refine the fault isolation further.


2020 ◽  
Vol 4 (141) ◽  
pp. 114-122
Author(s):  
DAR’YA LEBEDEVA ◽  
◽  
ANNA KARPUNICHEVA

Large forces and significant thermal effects are created on the rolls when rolling sheets. The higher the stability of the rolls, the less downtime during their rerolling and higher productivity. (Research purpose) The research purpose is in analyzing the ways of restoring rolls and choose the most appropriate method for restoring these parts. (Materials and methods) The article presents the analysis of the scientific and technical literature on the topic of rolling production, methods for restoring large-sized machine parts of machine-building and metallurgical industries that work in difficult conditions and are subject to a high degree of wear. Authors try to solve the problem by means of comparative and logical analysis based on theoretical and empirical methods of scientific research. (Results and discussion) The article presents two groups of methods for restoring rolled rolls: banding and surfacing the working layer of the roll. Authors have analyzed each method in terms of technology, equipment, and feasibility. The article presents the advantages and disadvantages of the methods under consideration. (Conclusions) The most acceptable way to restore parts with a high degree of wear is surfacing. It is most efficient to apply submerged surfacing using an additional hot additive. Such surfacing, despite some complication of the equipment design, allows to deposit the metal on the roll with low heat input and in most cases in one pass. Surfacing using an additional hot additive allows to increase the productivity of the process by up to 250 percent while reducing the penetration depth by 2-3 times and saving energy by up to 40 percent.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 112
Author(s):  
Carlos Emiliano Buelna-Garcia ◽  
José Luis Cabellos ◽  
Jesus Manuel Quiroz-Castillo ◽  
Gerardo Martinez-Guajardo ◽  
Cesar Castillo-Quevedo ◽  
...  

The starting point to understanding cluster properties is the putative global minimum and all the nearby local energy minima; however, locating them is computationally expensive and difficult. The relative populations and spectroscopic properties that are a function of temperature can be approximately computed by employing statistical thermodynamics. Here, we investigate entropy-driven isomers distribution on Be6B11− clusters and the effect of temperature on their infrared spectroscopy and relative populations. We identify the vibration modes possessed by the cluster that significantly contribute to the zero-point energy. A couple of steps are considered for computing the temperature-dependent relative population: First, using a genetic algorithm coupled to density functional theory, we performed an extensive and systematic exploration of the potential/free energy surface of Be6B11− clusters to locate the putative global minimum and elucidate the low-energy structures. Second, the relative populations’ temperature effects are determined by considering the thermodynamic properties and Boltzmann factors. The temperature-dependent relative populations show that the entropies and temperature are essential for determining the global minimum. We compute the temperature-dependent total infrared spectra employing the Boltzmann factor weighted sums of each isomer’s infrared spectrum and find that at finite temperature, the total infrared spectrum is composed of an admixture of infrared spectra that corresponds to the spectra of the lowest-energy structure and its isomers located at higher energies. The methodology and results describe the thermal effects in the relative population and the infrared spectra.


1968 ◽  
Vol 124 (2) ◽  
pp. 83-88 ◽  
Author(s):  
J.R.S. Hales ◽  
J.D. Findlay ◽  
D. Robertshaw

2014 ◽  
Vol 11 (4) ◽  
pp. 704-724 ◽  
Author(s):  
Saeid Reza Asemi ◽  
Ali Farajpour ◽  
Mehdi Borghei ◽  
Amir Hessam Hassani

Author(s):  
Yoann Launay ◽  
Jean-Michel Gillet

This article retraces different methods that have been explored to account for the atomic thermal motion in the reconstruction of one-electron reduced density matrices from experimental X-ray structure factors (XSF) and directional Compton profiles (DCP). Attention has been paid to propose the simplest possible model, which obeys the necessary N-representability conditions, while accurately reproducing all available experimental data. The deconvolution of thermal effects makes it possible to obtain an experimental static density matrix, which can directly be compared with theoretical 1-RDM (reduced density matrix). It is found that above a 1% statistical noise level, the role played by Compton scattering data becomes negligible and no accurate 1-RDM is reachable. Since no thermal 1-RDM is available as a reference, the quality of an experimentally derived temperature-dependent matrix is difficult to assess. However, the accuracy of the obtained static 1-RDM, through the performance of the refined observables, is strong evidence that the Semi-Definite Programming method is robust and well adapted to the reconstruction of an experimental dynamical 1-RDM.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750076 ◽  
Author(s):  
Şeref Doğuşcan Akbaş

The purpose of this study is to investigate the thermal effects on the free vibration of functionally graded (FG) porous deep beams. Mechanical properties of the FG deep beam are temperature-dependent and vary across the height direction with different porosity models. The governing equations problem is obtained by using the Hamilton’s principle. In the solution of the problem, plane piecewise solid continua model and finite element method are used. The effects of porosity parameters, material distribution, porosity models and temperature rising on the vibration characteristics are presented and discussed with porosity effects for FG deep beams.


In this paper the theory of the stability of viscous flow between two rotating coaxial cylinders which has been developed by Taylor, Jeffreys and Meksyn is extended to the case when the fluid considered is an electrical conductor and a magnetic field along the axis of the cylinders is present. A differential equation of order eight is derived which governs the situation in marginal stability; and a significant set of boundary conditions for the problem is formulated. The case when the two cylinders are rotating in the same direction and the difference ( d ) in their radii is small compared to their mean (R 0 ) is investigated in detail. A variational procedure for solving the underlying characteristic value problem and determining the critical Taylor numbers for the onset of instability is described. As in the case of thermal instability of a horizontal layer of fluid heated below, the effect of the magnetic field is to inhibit the onset of instability, the inhibiting effect being the greater, the greater the strength of the field and the value of the electrical conductivity. In both cases, the inhibiting effect of the magnetic field depends on the strength of the field ( H ), the density ( ρ ) and the coefficients of electrical conductivity ( σ ), kinematic viscosity ( v ) and magnetic permeability ( μ ) through the same non-dimensional combination Q =μ 2 H 2 d 2 σ/ pv ; however, the effect on rotational stability is more pronounced than on thermal instability. A table of the critical Taylor numbers for various values of Q is provided.


Sign in / Sign up

Export Citation Format

Share Document