New evidence corroborates population differentiation in Xanthoria parietina

2007 ◽  
Vol 39 (3) ◽  
pp. 259-271 ◽  
Author(s):  
Louise LINDBLOM ◽  
Stefan EKMAN

Abstract:In order to examine genetic variation and population structure of the widespread lichen-forming ascomycete Xanthoria parietina from similar habitats, but different sites in Scandinavia, we investigated seven populations in Scania, southernmost Sweden, and compared the results with a corresponding study on Storfosna, central Norway. Sequence variations of the nuclear ribosomal DNA were used as molecular markers, for both a part of the IGS region and the complete ITS1-5.8S-ITS2 region. The amount of genetic variability observed was comparable in the two investigations. Divergence between populations in different habitats found in the previous study was also present in this study. Xanthoria parietina is genetically differentiated between habitats with no evidence of restricted gene flow between populations in the same habitat at the present spatial scale, at least at sites along the coast of Scandinavia. Differentiation between habitats is considerable at both study sites, which we attribute to restricted gene flow between habitats, i.e. habitat isolation.

2011 ◽  
Vol 4 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Evgenyi N. Panov ◽  
Larissa Yu. Zykova

Field studies were conducted in Central Negev within the breeding range of Laudakia stellio brachydactyla and in NE Israel (Qyriat Shemona) in the range of an unnamed form (tentatively “Near-East Rock Agama”), during March – May 1996. Additional data have been collected in Jerusalem at a distance of ca. 110 km from the first and about 170 km from the second study sites. A total of 63 individuals were caught and examined. The animals were marked and their subsequent movements were followed. Social and signal behavior of both forms were described and compared. Lizards from Negev and Qyriat Shemona differ from each other sharply in external morphology, habitat preference, population structure, and behavior. The differences obviously exceed the subspecies level. At the same time, the lizards from Jerusalem tend to be intermediate morphologically between those from both above-named localities, which permits admitting the existence of a limited gene flow between lizard populations of Negev and northern Israel. The lizards from NE Israel apparently do not belong to the nominate subspecies of L. stellio and should be regarded as one more subspecies within the species.


2017 ◽  
Vol 37 (03) ◽  
pp. 149-162 ◽  
Author(s):  
Sweta Kumari U. Yadav ◽  
Jyotsna Singh ◽  
B. Padmanaban ◽  
Lalitha Sunil Kumar

AbstractCosmopolites sordidus(Germar), commonly known as banana corm weevil, is an important economic pest in Asia that can cause severe yield loss depending upon the stage at which infestation occurs. In spite of its economic importance, little is known about the population structure of this pest in India. Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) were used to characterize the population genetic structure ofC. sordiduscollected from five hot spot locations in India. Nineteen RAPD primers and five selective AFLP primer combinations generated 147 and 304 amplification products, respectively. UPGMA dendrograms generated with both marker systems failed to reveal populations clustered based on geographic distance, which was confirmed by the Mantel test, which did not show a strong correlation between genetic distance and geographic distance. Values of indices of genetic identity showed that the populations were closely related. Though the gene flow estimate (Nm) between the populations was 0.469, suggesting restricted gene flow, the populations are not genetically distinct. These observations suggest that the range expansion of this banana pest in India has taken place through transport of infested corms and plant material, resulting in genetically close populations that are geographically distinct. These results provide important information on the population structure of this pest in India, which will aid in designing suitable strategies for its control and management, especially with respect to insecticide resistance.


2009 ◽  
Vol 9 (1) ◽  
pp. 297 ◽  
Author(s):  
Sebastian Steinfartz ◽  
Scott Glaberman ◽  
Deborah Lanterbecq ◽  
Michael A Russello ◽  
Sabrina Rosa ◽  
...  

Parasitology ◽  
2015 ◽  
Vol 142 (14) ◽  
pp. 1693-1702 ◽  
Author(s):  
RUBEN ALEXANDER PETTERSEN ◽  
TOR ATLE MO ◽  
HAAKON HANSEN ◽  
LEIF ASBJØRN VØLLESTAD

SUMMARYThe extent of geographic genetic variation is the result of several processes such as mutation, gene flow, selection and drift. Processes that structure the populations of parasite species are often directly linked to the processes that influence the host. Here, we investigate the genetic population structure of the ectoparasite Gyrodactylus thymalli Žitňan, 1960 (Monogenea) collected from grayling (Thymallus thymallus L.) throughout the river Glomma, the largest watercourse in Norway. Parts of the mitochondrial dehydrogenase subunit 5 (NADH 5) and cytochrome oxidase I (COI) genes from 309 G. thymalli were analysed to study the genetic variation and investigated the geographical distribution of parasite haplotypes. Three main clusters of haplotypes dominated the three distinct geographic parts of the river system; one cluster dominated in the western main stem of the river, one in the eastern and one in the lower part. There was a positive correlation between pairwise genetic distance and hydrographic distance. The results indicate restricted gene flow between sub-populations of G. thymalli, most likely due to barriers that limit upstream migration of infected grayling. More than 80% of the populations had private haplotypes, also indicating long-time isolation of sub-populations. According to a molecular clock calibration, much of the haplotype diversity of G. thymalli in the river Glomma has developed after the last glaciation.


2002 ◽  
Vol 14 (4) ◽  
pp. 364-373 ◽  
Author(s):  
SHARON A. APPLEYARD ◽  
ROBERT D. WARD ◽  
RICHARD WILLIAMS

Two mitochondrial DNA regions and seven microsatellite loci were examined in Patagonian toothfish from three locations in the Southern Ocean (Macquarie Island, five collections; Heard and McDonald Islands, four collections; Shag Rocks/South Georgia area, one collection). Striking mtDNA heterogeneity was detected between the three fishing locations (FST=0.445, P<0.001), but spatial and temporal collections within the same location were not significantly different. No significant overall microsatellite differentiation between the three locations was apparent (FST=−0.009, P=0.785). However, some individual loci showed small but significant differentiation, which in each case was attributable to between rather than within-location differentiation. Greater differentiation of mtDNA can, in principle, be explained either by female philopatry and male dispersal, or by its greater sensitivity to changes in effective population size. The latter seems more likely as tagging indicates that toothfish is generally a sedentary species. The genetic heterogeneity between the three locations indicates restricted gene flow, with the fish at each location comprising independent units. Depletion in one location is therefore unlikely to be quickly replaced by immigration from another.


2005 ◽  
Vol 137 (6) ◽  
pp. 672-684 ◽  
Author(s):  
R. D. Laffin ◽  
L. M. Dosdall ◽  
F.A.H. Sperling

AbstractCeutorhynchus neglectus Blatchley is a weevil that is native to, and widely distributed in, North America. It has life-history characteristics similar to its alien invasive congener, Ceutorhynchus obstrictus (Marsham), the cabbage seedpod weevil. Our study was undertaken to compare the population structure of C. neglectus in North America to that of C. obstrictus, which, in contrast, was introduced only recently to North America and might be expected to have a simpler population structure. We also compared the population structure of C. neglectus to that of Pissodes strobi (Peck), which is known to possess high levels of intraspecific variation and is also a Nearctic weevil. We sequenced a 790-bp fragment of mtDNA (cytochrome oxidase I (COI) gene) and a 117-bp fragment of nuclear DNA (internal transcribed spacer region 1 (ITS1)). Nested clade analysis inferred contiguous range expansion and restricted gene flow with isolation by distance. Analysis of molecular variance also supported restricted gene flow between geographically distant populations. However, within-species variation in C. neglectus was lower than that for other weevil species including C. obstrictus. We also examined DNA divergences and phylogenetic relationships among 10 species of Ceutorhynchus using parsimony analysis of a 2.3-kb fragment of mtDNA (COI–COII) and a 541-bp fragment of nuclear DNA (elongation factor 1α).


2009 ◽  
Vol 36 (6) ◽  
pp. 466 ◽  
Author(s):  
Annabel L. Smith ◽  
Michael G. Gardner ◽  
Aaron L. Fenner ◽  
C. Michael Bull

Habitat fragmentation can have several adverse genetic impacts on populations. Assessing the extent of these threatening processes is essential in conservation management. In the present study, we investigated the genetic population structure of the endangered pygmy bluetongue lizard, Tiliqua adelaidensis, which is now restricted to a few small fragments of its previously more extensive grassland habitat. The aim of our study was to investigate genetic diversity and gene flow both among and within sample sites. The information will assist in making recommendations for habitat conservation and translocation programs. We collected DNA from 229 individuals from six isolated sample sites and genotyped them for 16 polymorphic microsatellite loci. Across all six sample sites, observed heterozygosity ranged from 0.75 to 0.82. There was no evidence of population bottlenecks and little evidence of inbreeding due to consanguineous mating. Genetic differentiation was low to moderate although significant for all pairs of sample sites (FST = 0.021–0.091). Results from Bayesian clustering analyses revealed distinct clusters in the overall sample and suggested restricted gene flow between sample sites separated by distances ranging from 1.7 to 71.6 km. By using spatial autocorrelation, we also found a significant genetic structure within sample sites at distances up to 30 m, suggesting restricted gene flow even in small patches of continuous habitat. It will be important to preserve this finely clustered population structure in captive breeding and translocation programs. Increasing opportunities for gene flow through habitat corridors or population augmentation may help maintain genetic diversity and prevent an increase in differentiation. Although endangered species do not always present model systems for studying fragmentation, our approach shows how important genetic information can be acquired to aid conservation in highly fragmented ecosystems.


2016 ◽  
Vol 113 (27) ◽  
pp. 7584-7589 ◽  
Author(s):  
Kexin Li ◽  
Liuyang Wang ◽  
Binyamin A. Knisbacher ◽  
Qinqin Xu ◽  
Erez Y. Levanon ◽  
...  

Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk–basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological–genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk–basalt divergence driving sympatric speciation.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Maysa Tiemi Motoki ◽  
Dina Madera Fonseca ◽  
Elliott Frederic Miot ◽  
Bruna Demari-Silva ◽  
Phoutmany Thammavong ◽  
...  

Abstract Background The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse) is an important worldwide invasive species and can be a locally important vector of chikungunya, dengue and, potentially, Zika. This species is native to Southeast Asia where populations thrive in both temperate and tropical climates. A better understanding of the population structure of Ae. albopictus in Lao PDR is very important in order to support the implementation of strategies for diseases prevention and vector control. In the present study, we investigated the genetic variability of Ae. albopictus across a north-south transect in Lao PDR. Methods We used variability in a 1337-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), to assess the population structure of Ae. albopictus in Lao PDR. For context, we also examined variability at the same genetic locus in samples of Ae. albopictus from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA. Results We observed very high levels of genetic polymorphism with 46 novel haplotypes in Ae. albopictus from 9 localities in Lao PDR and Thailand populations. Significant differences were observed between the Luangnamtha population and other locations in Lao PDR. However, we found no evidence of isolation by distance. There was overall little genetic structure indicating ongoing and frequent gene flow among populations or a recent population expansion. Indeed, the neutrality test supported population expansion in Laotian Ae. albopictus and mismatch distribution analyses showed a lack of low frequency alleles, a pattern often seen in bottlenecked populations. When samples from Lao PDR were analyzed together with samples from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA, phylogenetic network and Bayesian cluster analysis showed that most populations from tropical/subtropical regions are more genetically related to each other, than populations from temperate regions. Similarly, most populations from temperate regions are more genetically related to each other, than those from tropical/subtropical regions. Conclusions Aedes albopictus in Lao PDR are genetically related to populations from tropical/subtropical regions (i.e. Thailand, Singapore, and California and Texas in the USA). The extensive gene flow among locations in Lao PDR indicates that local control is undermined by repeated introductions from untreated sites.


Sign in / Sign up

Export Citation Format

Share Document