Restricted gene flow in the endangered pygmy bluetongue lizard (Tiliqua adelaidensis) in a fragmented agricultural landscape

2009 ◽  
Vol 36 (6) ◽  
pp. 466 ◽  
Author(s):  
Annabel L. Smith ◽  
Michael G. Gardner ◽  
Aaron L. Fenner ◽  
C. Michael Bull

Habitat fragmentation can have several adverse genetic impacts on populations. Assessing the extent of these threatening processes is essential in conservation management. In the present study, we investigated the genetic population structure of the endangered pygmy bluetongue lizard, Tiliqua adelaidensis, which is now restricted to a few small fragments of its previously more extensive grassland habitat. The aim of our study was to investigate genetic diversity and gene flow both among and within sample sites. The information will assist in making recommendations for habitat conservation and translocation programs. We collected DNA from 229 individuals from six isolated sample sites and genotyped them for 16 polymorphic microsatellite loci. Across all six sample sites, observed heterozygosity ranged from 0.75 to 0.82. There was no evidence of population bottlenecks and little evidence of inbreeding due to consanguineous mating. Genetic differentiation was low to moderate although significant for all pairs of sample sites (FST = 0.021–0.091). Results from Bayesian clustering analyses revealed distinct clusters in the overall sample and suggested restricted gene flow between sample sites separated by distances ranging from 1.7 to 71.6 km. By using spatial autocorrelation, we also found a significant genetic structure within sample sites at distances up to 30 m, suggesting restricted gene flow even in small patches of continuous habitat. It will be important to preserve this finely clustered population structure in captive breeding and translocation programs. Increasing opportunities for gene flow through habitat corridors or population augmentation may help maintain genetic diversity and prevent an increase in differentiation. Although endangered species do not always present model systems for studying fragmentation, our approach shows how important genetic information can be acquired to aid conservation in highly fragmented ecosystems.

Author(s):  
Diana Sr Alcazar ◽  
Marc Kochzius

Coral reef associated marine invertebrates, such as the blue sea starLinckia laevigata, have a life history with two phases: sedentary adults and planktonic larvae. On the one hand it is hypothesised that the long pelagic larval duration facilitates large distance dispersal. On the other hand, complex oceanographic and geographic characteristics of the Visayan seascape could cause isolation of populations. The study aims to investigate the genetic diversity, genetic population structure and gene flow inL. laevigatato reveal connectivity among populations in the Visayas. The analysis is based on partial sequences (626 bp in length) of the mitochondrial cytochrome oxidase I gene (COI) from 124 individuals collected from five localities in the Visayas. A comparative analysis of these populations with populations from the Indo-Malay Archipelago (IMA) published previously is also presented. Genetic diversity was high (h = 0.98, π = 1.6%) and comparable with preceding studies. Analyses of molecular variance (AMOVA) revealed a lack of spatial population differentiation among sample sites in the Visayas (ΦST-value = 0.009;P > 0.05). The lack of genetic population structure indicates high gene flow among populations ofL. laevigatain the Visayas. Comparative analysis with data from the previous study indicates high connectivity of the Visayas with the central part of the IMA.


Parasitology ◽  
2015 ◽  
Vol 142 (14) ◽  
pp. 1693-1702 ◽  
Author(s):  
RUBEN ALEXANDER PETTERSEN ◽  
TOR ATLE MO ◽  
HAAKON HANSEN ◽  
LEIF ASBJØRN VØLLESTAD

SUMMARYThe extent of geographic genetic variation is the result of several processes such as mutation, gene flow, selection and drift. Processes that structure the populations of parasite species are often directly linked to the processes that influence the host. Here, we investigate the genetic population structure of the ectoparasite Gyrodactylus thymalli Žitňan, 1960 (Monogenea) collected from grayling (Thymallus thymallus L.) throughout the river Glomma, the largest watercourse in Norway. Parts of the mitochondrial dehydrogenase subunit 5 (NADH 5) and cytochrome oxidase I (COI) genes from 309 G. thymalli were analysed to study the genetic variation and investigated the geographical distribution of parasite haplotypes. Three main clusters of haplotypes dominated the three distinct geographic parts of the river system; one cluster dominated in the western main stem of the river, one in the eastern and one in the lower part. There was a positive correlation between pairwise genetic distance and hydrographic distance. The results indicate restricted gene flow between sub-populations of G. thymalli, most likely due to barriers that limit upstream migration of infected grayling. More than 80% of the populations had private haplotypes, also indicating long-time isolation of sub-populations. According to a molecular clock calibration, much of the haplotype diversity of G. thymalli in the river Glomma has developed after the last glaciation.


2020 ◽  
pp. 1-7
Author(s):  
Kathleen Preißler ◽  
Eliane Küpfer ◽  
Fabian Löffler ◽  
Arlo Hinckley ◽  
Leon Blaustein ◽  
...  

Abstract The Near Eastern fire salamander (Salamandra infraimmaculata) reaches its southern distribution range in Israel. Although the population structure has been analysed in central Israel and at the southern distribution limit, we lack knowledge on populations in the northern area, such as along Mount Hermon. S. infraimmaculata occurs at Mt. Hermon along an altitudinal gradient and appears to be fragmented by urban and agricultural landscape. We studied the genetic structure of four populations based on microsatellite loci and the mitochondrial D-loop to determine the genetic diversity and connectivity between populations. We observed moderate gene flow at lower parts, i.e. from Tel Dan and Nimrod Castle to Banias indicating extant but limited connectivity. Genetic diversity and gene flow declined along the altitudinal gradient at Mt. Hermon, reaching rock-bottom levels in the highest located population of Nimrod Pool. The observed isolation-by-elevation gradient might induce a higher extinction risk for the highland populations of S. infraimmaculata.


Plant Gene ◽  
2020 ◽  
Vol 21 ◽  
pp. 100206 ◽  
Author(s):  
Bhuwnesh Goswami ◽  
Rekha Rankawat ◽  
Wahlang Daniel Regie ◽  
Bhana Ram Gadi ◽  
Satyawada Rama Rao

2012 ◽  
Vol 42 (1) ◽  
pp. 23-37 ◽  
Author(s):  
Anna W. Schoettle ◽  
Betsy A. Goodrich ◽  
Valerie Hipkins ◽  
Christopher Richards ◽  
Julie Kray

Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites across four mountain ranges in the core distribution of P. aristata were sampled and genetic diversity was assessed with 21 isozyme loci. Low species and population level genetic diversity (He = 0.070 and 0.062, respectively) occurred with moderate among-population differentiation (FST = 0.131). Genetic diversity correlated with longitude, latitude, and elevation and a strong mountain island effect may contribute to substructuring and isolation. Using multiple complementary analyses, sampled trees were assigned to three genetic lineages that varied in diversity and admixture and were associated with different climatic factors. The distribution of genetic diversity and substructuring of P. aristata may be an outcome of a combination of restricted gene flow due to geographic and phenological isolation, random processes of genetic drift, life history traits, natural selection, and postglacial migrations. The combination of low genetic diversity, moderate population isolation, and a protracted regeneration dynamic puts populations at risk for extirpation by novel stresses.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Dominique N. Gallery ◽  
Michelle L. Green ◽  
Ilsa B. Kuffner ◽  
Elizabeth A. Lenz ◽  
Lauren T. Toth

AbstractIncreases in local and global stressors have led to major declines in coral populations throughout the western Atlantic. While abundances of other species have declined, however, the relative abundance of the mustard hill coral, Porites astreoides, has increased. Porites astreoides is relatively resilient to some stressors, and because of its mixed reproductive strategies, its populations often recover quickly following disturbances. The ability for P. astreoides to continue as a potential “winner” in western Atlantic reefs relies on maintaining sufficient genetic variation within populations to support acclimatization and adaptation to current and future environmental change. Without high genetic diversity and gene flow within the population, it would have limited capacity for adaptation and the species’ competitive advantages could be short-lived. In this study, we determined the genetic relatedness of 37 P. astreoides colonies at four shallow reefs along the offshore Florida Keys Reef Tract (FKRT), a region particularly hard-hit by recent disturbances. Using previously designed microsatellite markers, we determined the genetic diversity and connectivity of individuals among and between sites. Our results suggest that the FKRT likely contains a single, well-mixed genetic population of P. astreoides, with high levels of gene flow and evidence for larval migration throughout the region. This suggests that regional populations of P. astreoides likely have a higher chance of maintaining resilience than many other western Atlantic species as they face current and future disturbances.


2020 ◽  
Author(s):  
Brenda G. Díaz ◽  
Maria I. Zucchi ◽  
Alessandro. Alves-Pereira ◽  
Caléo P. de Almeida ◽  
Aline C. L. Moraes ◽  
...  

AbstractAcrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of seven species of Acrocomia including 117 samples of A. aculeata covering a wide geographical area of occurrence, using single nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS). The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 873-888
Author(s):  
Jon F Wilkins ◽  
John Wakeley

Abstract In this article we present a model for analyzing patterns of genetic diversity in a continuous, finite, linear habitat with restricted gene flow. The distribution of coalescent times and locations is derived for a pair of sequences sampled from arbitrary locations along the habitat. The results for mean time to coalescence are compared to simulated data. As expected, mean time to common ancestry increases with the distance separating the two sequences. Additionally, this mean time is greater near the center of the habitat than near the ends. In the distant past, lineages that have not undergone coalescence are more likely to have been at opposite ends of the population range, whereas coalescent events in the distant past are biased toward the center. All of these effects are more pronounced when gene flow is more limited. The pattern of pairwise nucleotide differences predicted by the model is compared to data collected from sardine populations. The sardine data are used to illustrate how demographic parameters can be estimated using the model.


Sign in / Sign up

Export Citation Format

Share Document