Non-indigenous amphipods and mysids in coastal food webs of eastern Baltic Sea estuaries

Author(s):  
Nadezhda A. Berezina ◽  
Arturas Razinkovas-Baziukas ◽  
Alexei V. Tiunov

The study analyses the role of non-indigenous invertebrates in the food webs of two eutrophic brackish estuarine ecosystems of the Baltic Sea: the Neva River estuary and the Curonian Lagoon, with the aim of clarifying several questions such as what trophic levels were occupied by newly established species (mainly amphipods and mysids) and whether they can affect the native benthic invertebrates as a result of their possible carnivorous nature. Stable isotope analysis (δ15N values) and gut contents analysis of field-collected specimens were used to estimate trophic level and trophic links of the newly established malacostracan crustaceans, while their consumption rates when feeding as carnivores were measured experimentally. The δ15N analysis allocated four trophic levels (TL) in the coastal food webs of both studied ecosystems with the lowest δ15N (2–4‰) for detritus and algae and the highest for fish (12–14‰). Through their high abundance, non-indigenous crustaceans (Pontogammarus robustoides, Gmelinoides fasciatus, Obessogammarus crassus, Gammarus tigrinus, Limnomysis benedeni and Paramysis lacustris) have become important members of food chains of the studied ecosystems. Their trophic position varied significantly within species during ontogenesis. This suggests that they turned from being typically detritivores/plantivorous (TL 2–2.4) at juvenile stages to omnivores (2.5–3) or to carnivores (>3) as adults. Assessment of the predation pressure by the adult amphipods on other coexisting invertebrates (in the example of the Neva Estuary) showed a low or medium impact, depending on species of predator and productivity of its potential prey organisms.

NeoBiota ◽  
2021 ◽  
Vol 66 ◽  
pp. 75-94
Author(s):  
Sergey Golubkov ◽  
Alexei Tiunov ◽  
Mikhail Golubkov

The paucity of data on non-indigenous marine species is a particular challenge for understanding the ecology of invasions and prioritising conservation and research efforts in marine ecosystems. Marenzelleria spp. are amongst the most successful non-native benthic species in the Baltic Sea during recent decades. We used stable isotope analysis (SIA) to test the hypothesis that the dominance of polychaete worm Marenzelleria arctia in the zoobenthos of the Neva Estuary after its invasion in the late 2000s is related to the position of this species in the benthic food webs. The trend towards a gradual decrease in the biomass of Marenzelleria worms was observed during 2014–2020, probably due to significant negative relationships between the biomass of oligochaetes and polychaetes, both of which, according to SIA, primarily use allochthonous organic carbon for their production. The biomass of benthic crustaceans practically did not change and remained very low. The SIA showed that, in contrast to the native crustacean Monoporeia affinis, polychates are practically not consumed either by the main invertebrate predator Saduria entomon, which preys on M. affinis, oligochaetes and larvae of chironomids or by benthivorous fish that prefer native benthic crustaceans. A hypothetical model for the position and functional role of M. arctia in the bottom food web is presented and discussed. According the model, the invasion of M. arctia has created an offshoot food chain in the Estuary food webs. The former dominant food webs, associated with native crustaceans, are now poorly developed. The lack of top-down control obviously contributes to the significant development of the Marenzelleria food chain, which, unlike native food chains, does not provide energy transfer from autochthonous and allochthonous organic matter to the upper trophic levels. The study showed that an alien species, without displacing native species, can significantly change the structure of food webs, creating blind offshoots of the food chain.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fanyu Zhou ◽  
Junya Hirai ◽  
Koji Hamasaki ◽  
Sachiko Horii ◽  
Atsushi Tsuda

Euphausiids are abundant micronekton and important links between higher and lower trophic levels in marine ecosystems; however, their detailed diets cannot be fully understood by conventional microscopy, especially in subtropical areas. Here, we report the euphausiid community structure in the California Current (CC) area and the eastern/western North Pacific subtropical gyre (ESG and WSG) and detail the feeding ecology of the dominant species (Euphausia pacifica, E. brevis, and E. hemigibba) in each region using a combined approach of gut content analysis via 18S V9 metabarcoding and stable carbon and nitrogen isotope analysis. A pronounced omnivorous feeding of all studied euphausiid species was supported by both methods: phytoplanktonic taxonomic groups (Dinophyta, Stramenopiles, and Archaeplastida), Copepoda, and Hydrozoa were detected in the gut contents; all the three euphausiid species displayed an intermediate trophic position between the net plankton (0.2–1.0 mm) and the myctophid fish (15.2–85.5 mm). However, Hydrozoa found in euphausiid gut contents likely derived from a potential cod-end feeding, based on isotope analysis. E. pacifica in the CC province ingested more autotrophic prey, including pelagophyte and green algae, due to a greater abundance of Stramenopiles and Archaeplastida in shallow layers of CC water. On the other hand, non-autotrophic prey such as mixotrophic Kareniaceae dinoflagellates, Pontellidae and Clausocalanidae copepods, and Sphaerozoidae rhizarian contributed more to the diets of E. brevis and E. hemigibba because of a lower chlorophyll a concentration or potentially a scarcity of autotrophic prey availability in ESG and WSG. The feeding patterns of dominant euphausiid species conducting filter feeding were thus largely determined by phytoplankton prey availability in the environments. Dietary difference across three species was also indicated by stable isotope analysis, with a lower mean trophic level of E. pacifica (2.32) than E. brevis (2.48) and E. hemigibba (2.57). These results verify direct trophic interactions between euphausiids and primary production and suggest that the omnivorous feeding habit is a favorable character for dominant Euphausia species.


Author(s):  
Víctor M. Muro-Torres ◽  
Felipe Amezcua ◽  
Raul E. Lara-Mendoza ◽  
John T. Buszkiewicz ◽  
Felipe Amezcua-Linares

The trophic ecology of the chihuil sea catfish Bagre panamensis was studied through high-resolution variations in its feeding habits and trophic position (TP) in the SE Gulf of California, relevant to sex, size and season. The combined use of stomach content (SCA) and stable isotope analysis (SIA) allowed us to perform these analyses and also estimate the TP of its preys. Results of this study show that the chihuil sea catfish is a generalist and opportunistic omnivore predator that consumes primarily demersal fish and peneid shrimps. Its diet did not vary with climatic season (rainy or dry), size or sex. Results from the SIA indicated high plasticity in habitat use and prey species. The estimated TP value was 4.19, which indicates a tertiary consumer from the soft bottom demersal community in the SE Gulf of California, preying on lower trophic levels, which aids in understanding the species' trophic role in the food web. Because this species and its prey are important to artisanal and industrial fisheries in the Gulf of California, diet assimilation information is useful for the potential establishment of an ecosystem-based fisheries management in the area.


2010 ◽  
Vol 88 (2) ◽  
pp. 186-194 ◽  
Author(s):  
C. E. McParland ◽  
C. A. Paszkowski ◽  
J. L. Newbrey

Dietary overlap between waterbirds and fish in many freshwater systems can lead to competition for food resources and changes in the trophic position of top predators. We used stable isotope analysis of carbon and nitrogen from egg tissues to document differences in the trophic position of breeding Red-necked Grebes ( Podiceps grisegena (Boddaert, 1783)) on wetlands with and without fish in the Aspen Parkland of Alberta, Canada. Grebes occupied higher trophic levels in the presence of fish than in their absence, suggesting that small-bodied fish in Aspen Parkland food webs may lengthen food chains in which grebes are top predators. A mixed diet of invertebrates and fishes may be adaptive for grebes in this highly variable ecosystem where fish colonize wetlands in wet years and are extirpated in dry years. Carbon analyses indicated that female grebes likely obtained resources for egg production from breeding sites and not from wintering areas, as eggs had similar δ13C values to wetland primary producers, invertebrates, and fishes.


The Condor ◽  
2004 ◽  
Vol 106 (3) ◽  
pp. 638-651 ◽  
Author(s):  
Cynthia A. Paszkowski ◽  
Beverly A. Gingras ◽  
Kayedon Wilcox ◽  
Paul H. Klatt ◽  
William M. Tonn

Abstract We compared trophic ecology of grebes inferred from stable-isotope analysis to that from gut contents, and compared isotopic ratios of Red-necked Grebes (Podiceps grisegena) from lakes differing in their food webs. Analyses of different grebe tissues (egg yolk and albumen, pectoral and leg muscle, breast and primary feathers) also allowed us to assess the effectiveness of these tissues at representing grebe trophic relations. Isotopic ratios from pectoral and leg muscles were similar, based on comparisons within individual birds. Enriched values of δ15N and δ13C suggested that breast and primary feathers were molted over winter, and therefore reflected a marine food web. Albumen and yolk of grebe eggs and muscle tissues from downy chicks, however, matched isotopic characteristics of the local food web, indicating that female Red-necked Grebes use nutrients from the breeding lake for egg formation. Eggs, therefore, can provide excellent material for isotopic analysis aimed at assessing trophic relations of Red-necked Grebes on breeding lakes. Gut contents and stable isotopes both indicated that grebes from lakes with fish consumed a mixed diet of fish and macroinvertebrates and occupied the highest trophic level, at or above the level of piscivorous fishes. In contrast, grebes from lakes lacking fish occupied a lower trophic position. Relaciones Tróficas de Podiceps grisegena en Lagos del Bosque Boreal del Oeste: Un Análisis de Isótopos Estables Resumen. Comparamos la ecología trófica de Podiceps inferida a partir de análisis de isótopos estables con la de contenidos estomacales y comparamos las relaciones isotópicas de P. grisegena entre lagos que difieren en sus redes tróficas. Los análisis de diferentes tejidos de P. grisegena (yema y albumen del huevo, músculo pectoral y de la pierna, plumas del pecho y primarias) también nos permitieron evaluar la efectividad de estos tejidos para representar las relaciones tróficas de P. grisegena. Las relaciones isotópicas de los músculos pectorales y de las piernas basadas en comparaciones realizadas para cada ave individual fueron similares. Valores enriquecidos de δ15N y δ13C sugirieron que las aves mudaron las plumas del pecho y las primarias durante el invierno, y por lo tanto reflejaron una red trófica marina. El albumen y la yema del huevo de P. grisegena y los tejidos musculares de pichones emplumados, sin embargo, coincidieron con las características isotópicas de la red alimenticia local, indicando que las hembras de P. grisegena usan nutrientes del lago donde nidifican para la formación de los huevos. Los huevos, por lo tanto, pueden constituir un material excelente para análisis isotópicos centrados en evaluar las relaciones tróficas de P. grisegena en los lagos donde se reproducen. Los contenidos estomacales y los isótopos estables indicaron que los individuos de P. grisegena provenientes de lagos con peces consumieron una dieta mixta de peces y macroinvertebrados y ocuparon la posición trófica más alta, al mismo nivel o por arriba de los peces piscívoros. En contraste, los individuos provenientes de lagos sin peces ocuparon una posición trófica menor.


2010 ◽  
Vol 100 (5) ◽  
pp. 511-520 ◽  
Author(s):  
K. Oelbermann ◽  
S. Scheu

AbstractWe investigated if the commonly used aggregation of organisms into trophic guilds, such as detritivores and predators, in fact represent distinct trophic levels. Soil arthropods of a forest-meadow transect were ascribed a priori to trophic guilds (herbivores, detritivores, predators and necrovores), which are often used as an equivalent to trophic levels. We analysed natural variations in 15N/14N ratios of the animals in order to investigate the trophic similarity of organisms within (a priori defined) trophic guilds. Using trophic guilds as an equivalent to trophic level, the assumed stepwise enrichment of 15N by 3.4‰ per trophic level did not apply to detritivores; they were only enriched in 15N by on average 1.5‰ compared to litter materials. Predators on average were enriched in 15N by 3.5‰ compared to detritivores. Within detritvores and predators δ15N signatures varied markedly, indicating that these trophic guilds are dominated by generalist feeders which form a gradient of organisms feeding on different resources. The results indicate that commonly used trophic guilds, in particular detritivores and predators, do not represent trophic levels but consist of subguilds, i.e. subsets of organisms differing in resource utilization. In particular, in soil and litter food webs where trophic level omnivory is common, the use of distinct trophic levels may be inappropriate. Guilds of species delineated by natural variations of stable isotope ratios are assumed to more adequately represent the structure of litter and soil food webs allowing a more detailed understanding of their functioning.


Author(s):  
Renato Junqueira de Souza Dantas ◽  
Tatiana Silva Leite ◽  
Cristiano Queiroz de Albuquerque

In the present study, we evaluated the trophic role of Octopus insularis Leite and Haimovici, 2008 in the food web of Rocas Atoll, a preserved insular territory in the southwest Atlantic. Using stable isotope analysis of C and N, we showed that the local trophic web comprises at least four trophic levels, where the octopus presents d13C values from -12.1 to -6.1‰, d15N values from 6.4 to 11.0‰ and occupies a trophic position (TP) between the second and third trophic levels (mean ± SD TPadditive = 3.08 ± 0.36; TPBayesian = 3.12 ± 0.17). Among other benthic/reef-associated consumers, this cephalopod stood out for its much wider isotopic niche (SEAB = 4.7890), pointing to a diet diversified in carbon sources, but focused on prey in lower TPs. Time-minimizing feeding strategy seemed almost permanent throughout the life cycle, given the great niche overlap between small and large octopuses (large: SEAB = 4.59, small: SEAB = 4.03) and their very similar trophic positions (TPadditive/TPBayesian: large = 3.27/3.26; small = 2.89/2.99). Also, as a prey, O. insularis composed 16%-24% of the diet of some benthic/demersal predators. Overall, exerting great predatory pressure on bottom-associated organisms and serving as a relevant food source for top and mesopredators, O. insularis represented a top consumer of the benthic portion of the food web and an important link between its benthic and demersal strata with potential for keystone species.


2021 ◽  
Author(s):  
Agnes ML Karlson ◽  
Caroline Ek ◽  
Douglas Jones

AbstractNitrogen isotope analyses of amino-acids (δ15N-AA) are increasingly used to decipher food webs. Interpretation of δ15N-AA in consumers relies on the assumption that physiological status has a negligible influence on the trophic enrichment factor (TEF). Recent experiments have shown that this is not always the case and there is a need to validate derived trophic position (TP) estimates using ecological data. We analyzed δ15N-AA in cod and herring (1980-2019) from the Baltic Sea, a species-poor system where dramatic reduction in condition status of cod has occurred. We expected that TEFcod-herring in trophic AAs would increase during periods of poor cod growth, resulting in inflated TP estimates. We found that TEF and TP estimates were negatively linked to individual condition status, prey fat content and the hypoxic state of the ecosystem. Statistically adjusting for these variables resulted in lower cod TP, highlighting the importance of including ecological knowledge when interpreting TP.Scientific Significance StatementNitrogen stable isotope analyses in amino acids are increasingly used in ecology to understand how environmental change impacts food-webs. Specifically, it is used to more accurately calculate trophic position (TP) of consumers. Controlled experiments have shown that physiological status can alter amino acid isotope composition and TP interpretation, but field studies are lacking. We use 40 years of archived material to demonstrate that TP estimates in Baltic Sea cod and its prey herring are directly related to physiological status. This has important implications for interpreting the real trophic ecology of consumers under environmental stress. By simultaneously measuring condition status in both predator and prey it is possible to adjust for them as confounding variables and decipher actual consumer TP.


2021 ◽  
Author(s):  
Philip Riekenberg ◽  
Tijs Joling ◽  
Lonneke L. IJsseldijk ◽  
Andreas M. Waser ◽  
Marcel van der Meer ◽  
...  

AbstractTraditional bulk isotopic analysis is a pivotal tool for mapping consumer-resource interactions in food webs but has largely failed to adequately describe parasite-host relationships. Thus, parasite-host interactions remain largely understudied in food web frameworks despite these relationships increasing linkage density, connectance, and ecosystem biomass. Compound-specific stable isotopes from amino acids provides a promising novel approach that may aid in mapping parasitic interactions in food webs. However, to date it has not been applied to parasitic trophic interactions.Here we use a combination of traditional bulk stable isotope analyses and compound-specific isotopic analysis of the nitrogen in amino acids to examine resource use and trophic interactions of five parasites from three hosts from a marine coastal food web (Wadden Sea, European Atlantic). By comparing isotopic compositions of bulk and amino acid nitrogen, we aimed to characterize isotopic fractionation occurring between parasites and their hosts and to clarify the trophic position of the parasites.Our results showed that parasitic trophic interactions were more accurately identified when using compound-specific stable isotope analysis due to removal of underlying source isotopic variation for both parasites and hosts, and avoidance of the averaging of amino acid variability in bulk analyses through use of multiple trophic amino acids. The compound-specific method provided clear trophic discrimination factors in comparison to bulk isotope methods, however, those differences varied significantly among parasite species.Amino acid compound specific isotope analysis has widely been applied to examine trophic position within food webs, but our analyses suggest that the method is particularly useful for clarifying the feeding strategies for parasitic species. Baseline isotopic information provided by source amino acids allows clear identification of the fractionation occurring due to parasite metabolism by integrating underlying isotopic variations from the host tissues. However, like for bulk isotope analysis, the application of a universal trophic discrimination factor to parasite-host relationships remains inappropriate for compound-specific stable isotope analysis. Despite this limitation, compound-specific stable isotope analysis is and will continue to be a valuable tool to increase our understanding of parasitic interactions in marine food webs.


2018 ◽  
Vol 69 (8) ◽  
pp. 1248 ◽  
Author(s):  
Ryan J. Baring ◽  
Rebecca E. Lester ◽  
Peter G. Fairweather

Wrack accumulates commonly in surf zones of sandy beaches and can be a semipermanent feature. Very few studies have investigated the trophic pathways associated with wrack accumulations in sandy beach surf zones, despite their potential importance to nearshore food webs. In the present study, we were specifically interested in determining the fish–wrack trophic associations in the nearshore. Macrophytes, macroinvertebrates and fish were sampled from drifting wrack at two sites with different macrophyte compositions (i.e. algae v. an algae–seagrass mix) in South Australia. The gut contents of fish were sampled, and the δ13C and δ15N stable isotope signatures of fish, macroinvertebrates and macrophytes were analysed. Using both the stable isotope and diet data, we identified that fish are feeding among wrack accumulations, but some unexplained trophic pathways suggest that fish are also likely to be foraging over multiple habitats elsewhere for food. In contrast, there was more evidence that grazing macroinvertebrates may be feeding on and around macrophytes within the accumulations, as well as using them as habitat. Thus, the present study established some baseline trophic pathways associated with wrack accumulations in sandy beach surf zones. Given the modest evidence for use of wrack as a food source, the lower trophic levels of the food webs identified remain unknown and should be an area for future research.


Sign in / Sign up

Export Citation Format

Share Document