scholarly journals The gut microbial metabolome: modulation of cancer risk in obese individuals

2012 ◽  
Vol 72 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Wendy R. Russell ◽  
Sylvia H. Duncan ◽  
Harry J. Flint

Obesity is a critical health concern and although genetic factors may predispose an individual to become obese, changes in diet and lifestyle over the last few decades are likely to be significant contributors. Even so, it has been suggested that the causes of the current obesity crisis are not simply explained by changes in eating and exercise habits. Evidence suggests that the gut microbiota may play an important role in obesity and may be a factor in the development of associated disease including diabetes, CVD, non-alcoholic fatty liver disease and cancer. There have been tremendous advances in knowledge regarding the composition of human gut microbiota, but less is known about their function and role within the human host. It is becoming widely accepted that the products of microbial metabolism influence human health and disease, particularly with respect to immune response and inflammation. However, in most cases, the products of microbial metabolism are uncharacterised and their mechanism of action remains unknown. This review addresses the role of the metabolites produced by gut microbiota in cancer and obesity. It is clear that only if the link between microbial diversity and metabolic functionality is firmly established, will the mechanism by which gut microbiota maintains health or contributes to disease development be elucidated.

Metabolism ◽  
2017 ◽  
Vol 71 ◽  
pp. 182-197 ◽  
Author(s):  
Michael Doulberis ◽  
Georgios Kotronis ◽  
Dimitra Gialamprinou ◽  
Jannis Kountouras ◽  
Panagiotis Katsinelos

2020 ◽  
Vol 8 (4) ◽  
pp. 573 ◽  
Author(s):  
Mirco Vacca ◽  
Giuseppe Celano ◽  
Francesco Maria Calabrese ◽  
Piero Portincasa ◽  
Marco Gobbetti ◽  
...  

The complex polymicrobial composition of human gut microbiota plays a key role in health and disease. Lachnospiraceae belong to the core of gut microbiota, colonizing the intestinal lumen from birth and increasing, in terms of species richness and their relative abundances during the host’s life. Although, members of Lachnospiraceae are among the main producers of short-chain fatty acids, different taxa of Lachnospiraceae are also associated with different intra- and extraintestinal diseases. Their impact on the host physiology is often inconsistent across different studies. Here, we discuss changes in Lachnospiraceae abundances according to health and disease. With the aim of harnessing Lachnospiraceae to promote human health, we also analyze how nutrients from the host diet can influence their growth and how their metabolites can, in turn, influence host physiology.


2020 ◽  
pp. 13-19
Author(s):  
D. V. Sidorenko ◽  
V. D. Nazarov ◽  
S. V. Lapin ◽  
V. L. Emanuel

Non-alcoholic fatty liver disease is the most common liver disease, which usually has a benign course. After the occurrence of steatohepatitis the risk of developing fibrosis, cirrhosis and hepatocellular carcinoma significantly increases. At the moment, there are no reliable predictors of the aggressive course of this patients’ disease, but genetic aberrations are the most promising predictor markers. This article devoted to the role of the PNPLA3, TM6SF2, SERPINA1 and HFE genes in the pathogenesis and course of non-alcoholic fatty liver disease. Data of the prevalence of pathological alleles of these genes among patients living in St. Petersburg is also included.


2019 ◽  
Vol 133 (22) ◽  
pp. 2245-2264 ◽  
Author(s):  
Marta B. Afonso ◽  
Rui E. Castro ◽  
Cecília M. P. Rodrigues

Abstract Non-alcoholic fatty liver disease (NAFLD) is a significant public health concern, owing to its high prevalence, progressive nature and lack of effective medical therapies. NAFLD is a complex and multifactorial disease involving the progressive and concerted action of factors that contribute to the development of liver inflammation and eventually fibrosis. Here, we summarize fundamental molecular mechanisms underlying the pathogenesis of non-alcoholic steatohepatitis (NASH), how they are interrelated and possible translation to clinical applications. We focus on processes triggering and exacerbating apoptotic signalling in the liver of NAFLD patients and their metabolic and pathological implications. Indeed, liver injury and inflammation are cardinal histopathological features of NASH, a duo in which derailment of apoptosis is of paramount importance. In turn, the liver houses a very high number of mitochondria, crucial metabolic unifiers of both extrinsic and intrinsic signals that converge in apoptosis activation. The role of lifestyle options is also dissected, highlighting the management of modifiable risk factors, such as obesity and harmful alcohol consumption, influencing apoptosis signalling in the liver and ultimately NAFLD progression. Integrating NAFLD-associated pathologic mechanisms in the cell death context could provide clues for a more profound understating of the disease and pave the way for novel rational therapies.


Anaerobe ◽  
2017 ◽  
Vol 44 ◽  
pp. 3-12 ◽  
Author(s):  
Julius Z.H. von Martels ◽  
Mehdi Sadaghian Sadabad ◽  
Arno R. Bourgonje ◽  
Tjasso Blokzijl ◽  
Gerard Dijkstra ◽  
...  

2020 ◽  
Vol 8 (9) ◽  
pp. 1381
Author(s):  
Ceri Proffitt ◽  
Gholamreza Bidkhori ◽  
David Moyes ◽  
Saeed Shoaie

Since the discovery of the potential role for the gut microbiota in health and disease, many studies have gone on to report its impact in various pathologies. These studies have fuelled interest in the microbiome as a potential new target for treating disease Here, we reviewed the key metabolic diseases, obesity, type 2 diabetes and atherosclerosis and the role of the microbiome in their pathogenesis. In particular, we will discuss disease associated microbial dysbiosis; the shift in the microbiome caused by medical interventions and the altered metabolite levels between diseases and interventions. The microbial dysbiosis seen was compared between diseases including Crohn’s disease and ulcerative colitis, non-alcoholic fatty liver disease, liver cirrhosis and neurodegenerative diseases, Alzheimer’s and Parkinson’s. This review highlights the commonalities and differences in dysbiosis of the gut between diseases, along with metabolite levels in metabolic disease vs. the levels reported after an intervention. We identify the need for further analysis using systems biology approaches and discuss the potential need for treatments to consider their impact on the microbiome.


2019 ◽  
Vol 20 (2) ◽  
pp. 387 ◽  
Author(s):  
Arif Hasan ◽  
Asadur Rahman ◽  
Hiroyuki Kobori

The human gastrointestinal tract is inhabited by many types of microbiota, including bacteria, viruses, and fungi. Dysregulations of their microenvironment are associated with various health problems, not only limited to gastrointestinal disorders, such as inflammatory bowel disease, but to impacts beyond the intestine. For example, intestinal microbiota can affect the liver in non-alcoholic fatty liver disease, visceral adipose tissue during adipogenesis, and the heart in atherosclerosis. The factors contributing to these pathogeneses involve the gut microbiota and the effector organs of the host, and everything in between. The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are pivotal for the modulation of many of the pathogeneses mentioned above. It is, therefore, conceivable that, in the process of host-microbiota interactions, PPARs play important roles. In this review, we focus on the interactions between host PPARs in different organs and gut microbiota and their impacts on maintaining health and various diseases.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Natalia Vallianou ◽  
Gerasimos Socrates Christodoulatos ◽  
Irene Karampela ◽  
Dimitrios Tsilingiris ◽  
Faidon Magkos ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.


Sign in / Sign up

Export Citation Format

Share Document